Rotation und maximales Volumen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:42 Mo 29.01.2007 | Autor: | Kainho |
Aufgabe | Die Punkte A(z/0),B(z/f(z)) und C(2/0) bilden für z<2 ein Dreieck, welches um die X-Achse rotiert. Für welchen Wert von 2 ist das Volumen maximal?
[mm] f(x)=e^x [/mm] * (x-2)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. |
Wäre nett wenn ihr es mir so Anfängerfreundlich wie möglich beschreibt ich kann das einfahc nicht danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:43 Mo 29.01.2007 | Autor: | Kainho |
Also ich habe die Funktion schon gezeichnet und das X=Z sry.. bin so sehr ans x gewohnt, dass ich es beim abtippen einfach x anstatt z geschrieben habe..
ich weiß nicht wie man das maximale volumen berechnet und auch sonst nicht wirklich weiter.. die funktion hab ich aber schon gezeichnet :D
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:47 Mo 29.01.2007 | Autor: | Kainho |
achja ich hab schon herausgefunden dass V=1/3 pi * [mm] r^2 [/mm] *h ist
und A(D)=((2-z)*r)/2 aber ich versteh das nicht und ich kann auch keine eigene lösung bringen weil wir das noch nie hatten.. wir hatten einen lehrerwechsel und unser neuer lehrer erwartet nun dass wir das können. unser alter lehrer wollte das später mit uns machen habe schon mit dem lehrer geredet und er hat gesagt, dass wir das halt mit dem internet usw. lösen sollen..
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:06 Di 30.01.2007 | Autor: | leduart |
Hallo
Das Ganze ist ein Kegel, seine Hoehe h=2-z
sein Grundkreisradius r=f(z)
Damit ist das Volumen [mm] V(z)=\pi/3*(2-z)*(e^z*(z-2)^2
[/mm]
Dies Funktion V(z) gibt also das Volumen in Abhaengigkeit von der Stelle z an.
jetzt suchst du das Max. von V(z)
Also ableiten und V'(z)=0, dabei koennen Minima und Maxima rauskommen, also noch untersuchen, ob sichs wirklich um ein max handelt.
Gruss leduart
|
|
|
|