Rotationskörper < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:29 Mi 18.01.2006 | Autor: | snake16 |
Aufgabe | Bestimmen Sie die Zahl t > 1 so, dass der Graph der Funktion [mm] f_{t} [/mm]
[mm] f_{t}(x) [/mm] = (1-t)x²- tx mit der x - Achse eine Fläche einschließt, die
a) einen möglichst kleinen Flächeninhalt hat
b) bei Rotation um die x - Achse einen Drehkörper mit möglichst kleinem Volumen ergibt. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo! Ich komme leider nicht mit dieser Aufgabe klar.
Könnte mir vielleicht jemand helfen einen Lösungsansatz / die Lösung zu finden?
Vielen Dank!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:43 Mi 18.01.2006 | Autor: | Franzie |
Bestimmen Sie die Zahl t > 1 so, dass der Graph der Funktion
= (1-t)x²- tx mit der x - Achse eine Fläche einschließt, die
a) einen möglichst kleinen Flächeninhalt hat
b) bei Rotation um die x - Achse einen Drehkörper mit möglichst kleinem Volumen ergibt.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo! Ich komme leider nicht mit dieser Aufgabe klar.
Könnte mir vielleicht jemand helfen einen Lösungsansatz / die Lösung zu finden?
Vielen Dank!
Hallöchen!
Also Grundlage für beide Aufgaben ist ja das Extremalproblem. Skizziere die am besten mal die gegebene Funktion für ein beliebiges t, damit du dir den Sachverhalt vorstellen kannst. Dann weißt du auch, um welche Fläche es sich handelt, die minimal werden soll.
Als nächstes überlegst du dir, wie du die Fläche berechnen kannst. Das ist deine Hauptbedigung. Die Nebenbedingung stellt die gegebene Funktion dar. Damit kannst du die Zielfunktion aufstellen, diese differenzieren und das Extremum bestimmen.
Bei Aufgabe 2 ist auch wieder die Funktion selbst die Nebenbedingung und Hauptbedingung die Formel zur Berechnung eines Rotationskörpers.
Alles klar?
liebe Grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:34 Mi 18.01.2006 | Autor: | snake16 |
Ja gut. Vielen Dank!
Ich rechne das jetzt mal durch und versuche es.
Allerdings ist mir nicht so ganz klar, wie die Funktion(en) zu bestimmen sind.
Trotzdem schonmal vielen Dank!!
lg :)
|
|
|
|