www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Rotationsparaboloid
Rotationsparaboloid < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsparaboloid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 06.06.2012
Autor: guitarhero

Aufgabe
Rotationsparaboloid R={(x,y,z) [mm] \in R^3: z=x^{2}+y^{2}} [/mm]
Sei [mm] P=(x_{0},y_{0},z_{0}) [/mm] ein beliebiger Punkt auf R. Sei weiter [mm] F=(0,0,\bruch{1}{4}). [/mm]
Wir untersuchen die folgenden Vektoren:
[mm] v_{1}=\overline{PF} [/mm]
[mm] v_{2}=(0,0,1) [/mm]
sowie [mm] v_{3} [/mm] als Normalenvektor an R im Punkt P.

a) Zeigen Sie, dass die Vektoren in einer gemeinsamen Ebene liegen.
b) Zeigen Sie, dass [mm] v_{1} [/mm] und [mm] v_{2} [/mm] jeweils den gleichen Winkel zu [mm] v_{3} [/mm] bilden.
c) Finden Sie eine physikalische Deutung dieser Tatsache und geben Sie eine mögliche Anwendung in der Technik an.

Hallo zusammen,

ich bearbeite gerade unser neues Übungsblatt und komme bei Teilaufgabe b irgendwie ins Stocken.
Habe zunächst [mm] v_{1} [/mm] bestimmt: [mm] v_{1}= [/mm] F - P = [mm] (-x_{0}, -y_{0}, \bruch{1}{4}-z_{0}). [/mm]
Danach habe ich einen Normalenvektor [mm] v_{3} [/mm] gesucht und ihn über den Gradienten bestimmt: [mm] v_{3}= [/mm] grad [mm] F(x_{0},y_{0},z_{0}) [/mm] = [mm] (2x_{0}, 2y_{0}, [/mm] -1) bzw. [mm] (x_{0}, y_{0}, [/mm] -1/2).

Teilaufgabe a) war auch kein Problem mit dem Spatprodukt.

Nun habe ich bei Teilaufgabe b) aber einen riesigen Term stehen, wenn ich den Winkel zwischen [mm] v_{1} [/mm] und [mm] v_{3} [/mm] mit der üblichen Cosinus-Formel berechnen will.
Für den Winkel zwischen [mm] v_{2} [/mm] und [mm] v_{3} [/mm] habe ich etwas übersichtlicheres heraus:

[mm] \bruch{-1}{2*\wurzel{x_{0}^{4}+y_{0}^{4}+\bruch{1}{4}}}♦ [/mm]

Wäre sehr dankbar, wenn mir jemand sagen kann, wo mein Fehler liegt, da ich selbst nicht drauf komme.


Zu c)
Hat diese Tatsache hier explizit auf einen Rotationsparaboloidenen bezogen eine besonderer Bedeutung oder worum geht es hier?

Ich habe mir den Rotationsparaboloiden mal zeichnen lassen. Meine Idee ist nun, dass sich die Strahlen (Vektoren) ja auf der z-Achse treffen, egal, von wo die Strahlen ausgehen. Sie werden also hier gebündelt, was man zb bei Lasern einsetzt. Wobei ich noch nicht ganz weiß, was ich aus der Information, dass sie mit der Normalen an R den gleichen Winkel bilden, ablesen kann.

Ich danke bereits im Voraus.
Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rotationsparaboloid: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mi 06.06.2012
Autor: weduwe

zu teilaufgabe b) (ohne den index 0)

[mm] |\vec{v}_1|=\sqrt{x^2+y^2+(\frac{1}{4}-z)^2}=\sqrt{z+\frac{1}{16}-\frac{z}{2}+z^2}=\sqrt{(z+\frac{1}{4})^2} [/mm]

und nun ziehe die wurzel und vergleiche mit dem zähler :-)



edit: nebenbei erhalte ich für den 1. winkel etwas anderes als du


[mm] cos\alpha_{23}=\frac{-1}{\sqrt{4x^2+4y^2+1}} [/mm] was mit [mm] cos\alpha_{13} [/mm] übereinstimmt (siehe oben)

Bezug
                
Bezug
Rotationsparaboloid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Do 07.06.2012
Autor: guitarhero

Okay, der Trick war also, das z durch [mm] x^{2}+y^{2} [/mm] und umgekehrt auszudrücken. Ich komme nun auch auf die richtige Lösung, vielen Dank fürs Erleuchten, weduwe ;-)

Was kann ich nun daraus für den Aufgabenteil c) schließen? Geht mein Gedanke in die richtige Richtung, dass das heißt, dass praktisch die Vektoren, die mit [mm] v_{3} [/mm] den gleichen WInkel bilden an einem Punkt auf der z-Achse gebündelt weden?

Bezug
                        
Bezug
Rotationsparaboloid: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 07.06.2012
Autor: leduart

Hallö
alle Vektoren 0Lichtstrahlen parallel zur achse des parabol. treffen sich in f=Focus.
alle vektoren die von F ausgehen werden an der (spiegelnden Oberfläche des R so reflektiert, dass sie danach parallel zur Achse sind.
Technik: Hohlspiegel, Autoscheinwerfer, parabolantenne usw.
Gruss leduart

Bezug
                                
Bezug
Rotationsparaboloid: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Sa 09.06.2012
Autor: guitarhero

Alles klar, danke für die Hilfe! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de