www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Runge- Kutta Verfahren
Runge- Kutta Verfahren < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Runge- Kutta Verfahren: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 21:42 Do 15.04.2010
Autor: Ultio

Hallo,
ich habe da mal eine Frage, wäre schön wenn mir die bitte jemand beantworten kann:
Also ich habe ein Anfangswertproblem das sieht folgendermaßen aus:
[mm] y_{n+1}(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{0}^{x}{f(t,y(t)) dt} [/mm]
wobei f(t, y(t)) = [mm] \bruch{1}{1+t^{2}} [/mm]
also
[mm] y_{n+1}(t) [/mm] = [mm] y_0 [/mm] + [mm] \integral_{0}^{x}{\bruch{1}{1+t^{2}} dt} [/mm]

so nun soll ich das klassische Runge Kutta Verfahren anwenden:

[mm] K_1 [/mm] = [mm] f(t_n, y_n) [/mm]
[mm] K_2 [/mm] = [mm] f(t_n [/mm] + h/2, [mm] y_n+h/2 [/mm] k1)
[mm] K_3 [/mm] = [mm] f(t_n [/mm] + h/2, [mm] y_n+h/2 [/mm] k2)
[mm] K_4 [/mm] = [mm] f(t_n [/mm] + h/2, [mm] y_n+h/2 [/mm] k3)

[mm] Y_n+1 [/mm] = [mm] y_n [/mm] + h/6 (k1 + 2k2+ 2k3 + k4)

Meine Frage ist nun, ob folgende Gleichungen richtig sind?

[mm] k_1 [/mm] = [mm] \bruch{1}{1+t_{n}^{2}} [/mm]

[mm] k_2 [/mm] = [mm] \bruch{1}{1+(t_{n}+h/2)^{2}} [/mm] + h/2 [mm] \bruch{1}{1+t_{n}^{2}} [/mm]

[mm] k_3 [/mm] = [mm] \bruch{1}{1+(t_{n}+h/2)^{2}} [/mm] + h/2 [mm] \bruch{1}{1+(t_{n}+ h/2)^{2}} [/mm] + [mm] h^{2}/4 \bruch{1}{1+t_{n}^{2}} [/mm]

[mm] k_4 [/mm] = [mm] \bruch{1}{1+(t_{n}+h)^{2}} [/mm] + h/2 [mm] \bruch{1}{1+(t_{n}+ h/2)^{2}} [/mm] +   [mm] h^{2}/4 \bruch{1}{1+(t_{n}+ h/2)^{2}} [/mm] +  [mm] h^{3}/8 \bruch{1}{1+t_{n}^{2}} [/mm]

naja und dann einsetzen, aber dies muss ja ersteinmal richtig formuliert werden.
Vielen dank im Voraus!
Gruß
Felix


        
Bezug
Runge- Kutta Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Do 15.04.2010
Autor: MathePower

Hallo Ultio,

> Hallo,
>  ich habe da mal eine Frage, wäre schön wenn mir die
> bitte jemand beantworten kann:
>  Also ich habe ein Anfangswertproblem das sieht
> folgendermaßen aus:
>  [mm]y_{n+1}(t)[/mm] = [mm]y_0[/mm] + [mm]\integral_{0}^{x}{f(t,y(t)) dt}[/mm]
>  wobei
> f(t, y(t)) = [mm]\bruch{1}{1+t^{2}}[/mm]
>  also
>  [mm]y_{n+1}(t)[/mm] = [mm]y_0[/mm] + [mm]\integral_{0}^{x}{\bruch{1}{1+t^{2}} dt}[/mm]
>  
> so nun soll ich das klassische Runge Kutta Verfahren
> anwenden:
>  
> [mm]K_1[/mm] = [mm]f(t_n, y_n)[/mm]
>  [mm]K_2[/mm] = [mm]f(t_n[/mm] + h/2, [mm]y_n+h/2[/mm] k1)
>  [mm]K_3[/mm] = [mm]f(t_n[/mm] + h/2, [mm]y_n+h/2[/mm] k2)
>  [mm]K_4[/mm] = [mm]f(t_n[/mm] + h/2, [mm]y_n+h/2[/mm] k3)
>  
> [mm]Y_n+1[/mm] = [mm]y_n[/mm] + h/6 (k1 + 2k2+ 2k3 + k4)
>  
> Meine Frage ist nun, ob folgende Gleichungen richtig sind?
>
> [mm]k_1[/mm] = [mm]\bruch{1}{1+t_{n}^{2}}[/mm]
>  
> [mm]k_2[/mm] = [mm]\bruch{1}{1+(t_{n}+h/2)^{2}}[/mm] + h/2
> [mm]\bruch{1}{1+t_{n}^{2}}[/mm]
>  
> [mm]k_3[/mm] = [mm]\bruch{1}{1+(t_{n}+h/2)^{2}}[/mm] + h/2
> [mm]\bruch{1}{1+(t_{n}+ h/2)^{2}}[/mm] + [mm]h^{2}/4 \bruch{1}{1+t_{n}^{2}}[/mm]
>  
> [mm]k_4[/mm] = [mm]\bruch{1}{1+(t_{n}+h)^{2}}[/mm] + h/2 [mm]\bruch{1}{1+(t_{n}+ h/2)^{2}}[/mm]
> +   [mm]h^{2}/4 \bruch{1}{1+(t_{n}+ h/2)^{2}}[/mm] +  [mm]h^{3}/8 \bruch{1}{1+t_{n}^{2}}[/mm]


Da f nicht von y abhängt, ist  hier nur der erste Summand zu  berücksichtigen.

Demnach:

[mm]k_{1} = \bruch{1}{1+t_{n}^{2}}[/mm]
  
[mm]k_{2} = \bruch{1}{1+(t_{n}+h/2)^{2}}[/mm]

[mm]k_{3} = \bruch{1}{1+(t_{n}+h/2)^{2}}[/mm]

[mm]k_{4} = \bruch{1}{1+(t_{n}+h)^{2}}[/mm]


>  
> naja und dann einsetzen, aber dies muss ja ersteinmal
> richtig formuliert werden.
>  Vielen dank im Voraus!
>  Gruß
>  Felix
>  


Gruss
MathePower

Bezug
                
Bezug
Runge- Kutta Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Do 15.04.2010
Autor: Ultio

Dankeschön.
Gruß
Felix

Bezug
                
Bezug
Runge- Kutta Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Fr 16.04.2010
Autor: Ultio

Hi,
und was muss ich machen wenn ich zum Beispiel
y' = x+y
also f(t,y(t)) = x+y habe wie sehen dabei [mm] k_1 [/mm] und [mm] k_2 [/mm] aus?
Danke schon mal.
Gruß
Felix

Bezug
                        
Bezug
Runge- Kutta Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Fr 16.04.2010
Autor: MathePower

Hallo Ultio,

> Hi,
>  und was muss ich machen wenn ich zum Beispiel
>  y' = x+y
>  also f(t,y(t)) = x+y habe wie sehen dabei [mm]k_1[/mm] und [mm]k_2[/mm]
> aus?


[mm]k_{1}=t_{n}+y_{n}[/mm]

[mm]k_{2}=\left(t_{n}+\bruch{h}{2}\right)+\left(y_{n}+\bruch{h}{2}k_{1}\right)=\left(t_{n}+\bruch{h}{2}\right)+\left(y_{n}+\bruch{h}{2} \ \left(t_{n}+y_{n}\right) \ \right)[/mm]

[mm]=\bruch{h}{2}+\left(1+\bruch{h}{2}\right)*t_{n}+\left(1+\bruch{h}{2}\right)*y_{n}[/mm]


>  Danke schon mal.
>  Gruß
>  Felix


Gruss
MathePower

Bezug
                                
Bezug
Runge- Kutta Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:37 So 18.04.2010
Autor: Ultio

Danke danke danke, du weißt gar nicht wie sehr du mir damit geholfen hast.
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de