www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Sammelkarten
Sammelkarten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sammelkarten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:23 Mo 05.01.2009
Autor: tommie70

Hallo,
ich überlege schon eine Weile an dieser Frage, bin bis jetzt aber leider zu keiner Lösung gekommen.
Mein Junior hat sich ein paar Päckchen mit Sammelkarten gekauft. In jedem Päckchen sind 5 zufällige Karten, es gibt ingesamt  40 verschiedene Karten. Wieviele Päckchen muß er wahrscheinlich kaufen, um alle verschiedenen Karten mindestens einmal zu haben?
Ich habe leider keinen passenden Anstz gefunden, das was ich bisher gesehen habe war immer von der Aufgabenstellung anders.
mfg

Tom

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sammelkarten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mo 05.01.2009
Autor: luis52

Moin tommie70,

[willkommenmr]

Deine Aufgabe ist in der statistischen Literatur unter dem Stichwort
"Coupon Collector's Problem" bekannt. []Da schau her.

vg Luis
          

Bezug
                
Bezug
Sammelkarten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Mo 05.01.2009
Autor: tommie70

Hallo Luis,
danke für die Antwort!
Leider sind meine Mathe-Kenntnisse nicht so gut, dass ich aus dem verlinkten Artikel (oder dem was Google ausspuckt) eine konkrete Formel bilden könnte.
Kannst Du mir evtl. noch eine Formel für dieses Problem nennen die ein mittlemässiger, eingerosteter nicht-studierter lösen kann? (Oder wenns einfacher ist gleich die Lösung?)
Gruß

Tom

Bezug
                        
Bezug
Sammelkarten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 05.01.2009
Autor: luis52


> Hallo Luis,
>  danke für die Antwort!
>  Leider sind meine Mathe-Kenntnisse nicht so gut, dass ich
> aus dem verlinkten Artikel (oder dem was Google ausspuckt)
> eine konkrete Formel bilden könnte.
> Kannst Du mir evtl. noch eine Formel für dieses Problem
> nennen die ein mittlemässiger, eingerosteter
> nicht-studierter lösen kann? (Oder wenns einfacher ist
> gleich die Lösung?)

Damit tue ich mich etwas schwer. Du schreibst:

> Wieviele Päckchen muß er
> wahrscheinlich kaufen, um alle verschiedenen Karten
> mindestens einmal zu haben?

Koenntest du das bitte etwas genauer fassen?

vg Luis

Bezug
                                
Bezug
Sammelkarten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mo 05.01.2009
Autor: tommie70

Hallo Luis,!

>  
> Damit tue ich mich etwas schwer. Du schreibst:
>  
> > Wieviele Päckchen muß er
> > wahrscheinlich kaufen, um alle verschiedenen Karten
> > mindestens einmal zu haben?
>  
> Koenntest du das bitte etwas genauer fassen?
>  
> vg Luis

Was meinst Du mit genauer fasssen? Ich meinte, bis (wahrscheinlich, bei gleichmässiger zufälliger verteilung der Karten) alle verschiedenen 40 Karten mindestens einmal gekauft wurden. Ich verstehe gerade nicht, was daran ungenau sein könnte. Bitte kläre mich auf, was Du damit meinst.

mfg
Tom

Bezug
                                        
Bezug
Sammelkarten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mo 05.01.2009
Autor: Al-Chwarizmi

Hallo Tom,

um mit absoluter Sicherheit alle Karten zu erhalten,
muss man theoretisch unendlich viele Päckchen kaufen,
wenn die Päckchen unabhängig voneinander rein
zufällig zusammengestellt werden.

Du müsstest also deine Frage abschwächen zu einer
Frage der Art:

"Wie viele Päckchen muss man kaufen, um mit einer
Wahrscheinlichkeit von mindestens 95% alle Karten
zu erhalten".
Dies wird dann allerdings eine recht schwierige
kombinatorische Aufgabe.

Im Wikipedia-Artikel "Sammelbilderproblem" wird die
Frage untersucht  "Wie viele Karten muss man durch-
schnittlich
kaufen, bis man das ganze Sortiment hat ?".
Natürlich garantiert dies keineswegs, dass man nach
dem Kauf so vieler Karten wirklich alle Motive hat.

Wahrscheinlich sind ja nicht einmal die Anbieter solcher
Karten so optimistisch, dass sie erwarten würden, dass
ihre Kunden so lange weitere Karten kaufen, bis sie
unter den selber gekauften das ganze Sortiment haben.
Das Element des Tauschens (und die damit verbundene
Mund-zu-Mund-Propaganda für das Spiel) ist wohl für
den Erfolg solcher Bildkarten in der Zielgruppe der
Kinder noch wesentlich wichtiger.


LG

Bezug
        
Bezug
Sammelkarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mo 05.01.2009
Autor: Zwerglein

Hi, tommie,

oder hier
[]http://de.wikipedia.org/wiki/Sammelbilderproblem
die deutsche Version.

mfG!
Zwerglein



Bezug
                
Bezug
Sammelkarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mo 05.01.2009
Autor: tommie70

Danke,
aber meine Mathekenntnisse sind leider etwas .... naja, es reicht spontan nicht ganz. Trotzdem danke, auf englisch war es deutlich schwieriger...
mfg
Tom

Bezug
        
Bezug
Sammelkarten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mo 05.01.2009
Autor: generation...x

Nur leider ist in der Realität die Grundannahme, dass alle Karten mit gleicher Wahrscheinlichkeit auftreten, aus ökonomischen Motiven oft verletzt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de