www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Satz des Pythagoras
Satz des Pythagoras < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz des Pythagoras: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mi 13.08.2008
Autor: puma

Aufgabe
Dein Freund hat bei einem Gewinnspiel eine Reise mit einem Heißluftballon gewonnen. Heute ist es endlich soweit und er fliegt los. Er ruft dich mit dem Handy an und erzählt dir, dass er gleich ungefähr 1 km vor deinem Haus vorbeifliegt und du ihn mit dem Fernglas beobachten sollst. Dein Fernglas hat eine Sichtweite von ungefähr 1,2 km und du kannst deinen Freund gerade noch sehen. Wie hoch mag er wohl gerade in der Luft sein?

Also die Formel für gleichschenklige Dreiecke lautet ja: a² + b² = c²
Als Ergebnis soll 663 Meter rauskommen.

Ich habe wie folgt gerechnet:
(h = Höhe, s= Sichtweite)

h² + s² = x²      | - s²
x² - s² = h²
1000m² - 1200m² = h² (Erstes Problem, weil hier ja eine Minuszahl rauskommen würde, wo liegt hier mein Fehler?)
200m² = h²        | [mm] \wurzel [/mm]
14,142m = h

Nur leider ist das falsch. :(:(

Wer kann mir helfen?

Danke schon mal!


        
Bezug
Satz des Pythagoras: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 13.08.2008
Autor: Somebody


> Dein Freund hat bei einem Gewinnspiel eine Reise mit einem
> Heißluftballon gewonnen. Heute ist es endlich soweit und er
> fliegt los. Er ruft dich mit dem Handy an und erzählt dir,
> dass er gleich ungefähr 1 km vor deinem Haus vorbeifliegt
> und du ihn mit dem Fernglas beobachten sollst. Dein
> Fernglas hat eine Sichtweite von ungefähr 1,2 km und du
> kannst deinen Freund gerade noch sehen. Wie hoch mag er
> wohl gerade in der Luft sein?
>  Also die Formel für gleichschenklige Dreiecke lautet ja:
> a² + b² = c²
>  Als Ergebnis soll 663 Meter rauskommen.
>  
> Ich habe wie folgt gerechnet:
>  (h = Höhe, s= Sichtweite)
>  
> h² + s² = x²      | - s²

Nein, ich denke: die Sichtweite $s$ ist die Hypotenuse im rechtwinkligen Dreieck, dessen Katheten die Höhe $h$ des Ballons über dem Boden und die Distanz $x=1$ (km) von Ballon und Beobachter in horizontaler Richtung sind. Also müsste diese Beziehung lauten [mm] $s^2=x^2+h^2$, [/mm] also nach der gesuchten Grösse $h$ aufgelöst: [mm] $h=\sqrt{s^2-x^2}$ [/mm]

>  x² - s² = h²
>  1000m² - 1200m² = h² (Erstes Problem, weil hier ja eine
> Minuszahl rauskommen würde, wo liegt hier mein Fehler?)

Eben: $s$ ist die Hypotenuse des rechtwinkligen Dreiecks (also dessen längste Seite), nicht eine der Katheten. Am besten machst Du Dir bei solchen Aufgaben eine ganz grobe Skizze, in die Du das rechtwinklige Dreieck und die gegebenen und gesuchten Grössen einträgst, bevor Du die Gleichung aufstellst: dann kann es zu einer solchen Verwechslung von Hypotenuse und Kathete kaum noch kommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de