www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Satz v. Fubini - Umkehrfkt
Satz v. Fubini - Umkehrfkt < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz v. Fubini - Umkehrfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mi 16.11.2016
Autor: ChopSuey

Hallo,

ich habe eine Frage zum Satz v. Fubini. Angenommen es soll ein Doppelintegral der Form $ [mm] \int_{0}^1\int_{f(x)}^1 \phi(x,y)dydx [/mm] $ berechnet werden ($f(x)$ sei Injektiv auf dem kompakten Intervall das betrachtet wird, also hier bspw $[0,1]$

Nun war es in den Aufgaben, die ich lösen sollte, bisher immer so, dass der zu integrierende Bereich (noch) nicht sonderlich kompliziert war und man die Integrationsgrenzen so ändern musste dass das Integral zu

$ [mm] \int_{0}^1\int_{0}^{f^{-1}(x)} \phi(x,y)dxdy [/mm] $ wird. Man hat den Integrationsbereich $ x [mm] \in [/mm] [0,1]$ und $ y [mm] \in [/mm] [f(x),1]$ geändert zu $  y [mm] \in [/mm] [0,1]$  und $ x [mm] \in [0,f^{-1}(x)]$ [/mm]

Ich hoffe dass ich es korrekt aufgeschrieben habe. Verzeiht mir, falls mir ein Formfehler irgendwo unterlaufen ist. Jedenfalls wollte ich gerne wissen, ob das über die Umkehrfunktion (vorausgesetzt $f(x)$ ist injektiv) beim Satz v. Fubini immer diese Anwendung findet oder ob das bloß bei wenigen einfachen Beispielen der Fall ist und man das im Allg. so garnicht sagen kann.

Freue mich über jeden Hinweis

LG,
ChopSuey

        
Bezug
Satz v. Fubini - Umkehrfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mi 16.11.2016
Autor: Gonozal_IX

Hiho,

deine Aussage stimmt, falls du über den Bereich [mm] $\{0 \le x \le 1, 0 \le y \le 1, f(x) \le y\}$ [/mm] integrieren sollst und f monoton ist, denn dann ist offenbar
[mm] $$\{0 \le x \le 1, 0 \le y \le 1, f(x) \le y\} [/mm] = [mm] \{0 \le x \le 1, 0 \le y \le 1, x \le f^{-1}(y) \}$ [/mm] was durch einfaches Anwenden der Umkehrfunktion auf die Ungleichung klar wird.

Gruß,
Gono.

Bezug
                
Bezug
Satz v. Fubini - Umkehrfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Mi 16.11.2016
Autor: ChopSuey

Hallo Gono,

danke für die Rückmeldung! Falls ich nochmal Fragen hab, meld ich mich hier.

Danke dir vielmals.

LG
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de