Satz v. Fubini - Umkehrfkt < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:54 Mi 16.11.2016 | Autor: | ChopSuey |
Hallo,
ich habe eine Frage zum Satz v. Fubini. Angenommen es soll ein Doppelintegral der Form $ [mm] \int_{0}^1\int_{f(x)}^1 \phi(x,y)dydx [/mm] $ berechnet werden ($f(x)$ sei Injektiv auf dem kompakten Intervall das betrachtet wird, also hier bspw $[0,1]$
Nun war es in den Aufgaben, die ich lösen sollte, bisher immer so, dass der zu integrierende Bereich (noch) nicht sonderlich kompliziert war und man die Integrationsgrenzen so ändern musste dass das Integral zu
$ [mm] \int_{0}^1\int_{0}^{f^{-1}(x)} \phi(x,y)dxdy [/mm] $ wird. Man hat den Integrationsbereich $ x [mm] \in [/mm] [0,1]$ und $ y [mm] \in [/mm] [f(x),1]$ geändert zu $ y [mm] \in [/mm] [0,1]$ und $ x [mm] \in [0,f^{-1}(x)]$
[/mm]
Ich hoffe dass ich es korrekt aufgeschrieben habe. Verzeiht mir, falls mir ein Formfehler irgendwo unterlaufen ist. Jedenfalls wollte ich gerne wissen, ob das über die Umkehrfunktion (vorausgesetzt $f(x)$ ist injektiv) beim Satz v. Fubini immer diese Anwendung findet oder ob das bloß bei wenigen einfachen Beispielen der Fall ist und man das im Allg. so garnicht sagen kann.
Freue mich über jeden Hinweis
LG,
ChopSuey
|
|
|
|
Hiho,
deine Aussage stimmt, falls du über den Bereich [mm] $\{0 \le x \le 1, 0 \le y \le 1, f(x) \le y\}$ [/mm] integrieren sollst und f monoton ist, denn dann ist offenbar
[mm] $$\{0 \le x \le 1, 0 \le y \le 1, f(x) \le y\} [/mm] = [mm] \{0 \le x \le 1, 0 \le y \le 1, x \le f^{-1}(y) \}$ [/mm] was durch einfaches Anwenden der Umkehrfunktion auf die Ungleichung klar wird.
Gruß,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:48 Mi 16.11.2016 | Autor: | ChopSuey |
Hallo Gono,
danke für die Rückmeldung! Falls ich nochmal Fragen hab, meld ich mich hier.
Danke dir vielmals.
LG
ChopSuey
|
|
|
|