www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Satz von Euler & Kongruenzen
Satz von Euler & Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Euler & Kongruenzen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 06.06.2012
Autor: Pauli85

Aufgabe
Betrachte die Einwegfunktion k [mm] \mapsto a^{k} [/mm] mod n.
Sei n nun n=11. Bestimme für a = 1...10 jeweils das kleinste k > 0 mit [mm] a^{k} \equiv [/mm] 1 mod 11.

Hallo,
ich weiß zwar wie man bei der Aufgabe geschickt vorgehen kann, jedoch verstehe ich noch nicht so ganz warum.
Durch den Satz von Euler kann man k auf höchstens 10 festlegen, denn [mm] \phi(11) [/mm] = 10. Also muss für alle a gelten: [mm] a^{10} \equiv [/mm] 1 mod 11. Jetzt sind wir aber am kleinsten k interessiert. In Frage kommen jetzt alle k's, die Teiler von 10 sind, also k [mm] \in [/mm] {1,2,5,10}.
Doch wieso gerade die Teiler von 10? Kann mir das jemand erklären?

Grüße

        
Bezug
Satz von Euler & Kongruenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 06.06.2012
Autor: reverend

Hallo Pauli,

ich weiß noch nicht, ob ich das erklären kann - es scheint so offensichtlich zu sein. ;-)

> Betrachte die Einwegfunktion k [mm]\mapsto a^{k}[/mm] mod n.
>  Sei n nun n=11. Bestimme für a = 1...10 jeweils das
> kleinste k > 0 mit [mm]a^{k} \equiv[/mm] 1 mod 11.
>  Hallo,
>  ich weiß zwar wie man bei der Aufgabe geschickt vorgehen
> kann, jedoch verstehe ich noch nicht so ganz warum.
>  Durch den Satz von Euler kann man k auf höchstens 10
> festlegen, denn [mm]\phi(11)[/mm] = 10. Also muss für alle a
> gelten: [mm]a^{10} \equiv[/mm] 1 mod 11. Jetzt sind wir aber am
> kleinsten k interessiert. In Frage kommen jetzt alle k's,
> die Teiler von 10 sind, also k [mm]\in[/mm] {1,2,5,10}.

Ja, alles ganz wunderbar.

>  Doch wieso gerade die Teiler von 10? Kann mir das jemand
> erklären?

Na, wenn für ein k mit k|10 die Kongruenz [mm] a^k\equiv 1\mod{11} [/mm] erfüllt ist, dann gibt es ja ein m mit m*k=10, so dass auch [mm] a^{10}=a^{m*k}=\left(a^k\right)^m\equiv 1^m \equiv 1\mod{11} [/mm] gilt. Soweit, so langweilig.

Nehmen wir aber an das kleinste k sei kein Teiler von 10, dann führt das ja zu einem Widerspruch: Sei [mm] a^k\equiv 1\mod{11}, [/mm] natürlich mit k<11.
Dann gibt es ein m, so dass m*k<11<(m+1)*k ist. Dann ist d:=11-m*k<k.

Es muss aber auch gelten: [mm] a^d\equiv 1\mod{11}, [/mm] was der gesuchte Widerspruch ist.

Verstehst Du den letzten Schritt? Ich habe ihn bewusst nicht ganz vollständig aufgeschrieben.

Grüße
reverend


Bezug
                
Bezug
Satz von Euler & Kongruenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 So 10.06.2012
Autor: Pauli85

Alles klar, vielen Dank für deine Hilfe! Jetzt, wo ich die Sache in mathematischen Ausdrücken sehe, fallen mir die Tomaten vor den Augen runter ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de