www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Fubini
Satz von Fubini < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Fubini: Warum eigentlich?
Status: (Frage) beantwortet Status 
Datum: 08:55 Fr 11.12.2009
Autor: derdickeduke

Aufgabe
Es sei f: [mm] [0,M]x[0,\infty) \to \IR [/mm] gegeben durch [mm] f(x,t)=sin(x)e^{-xt}, [/mm] wobei M > 0
c) Zeigen Sie, dass [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm]
d) Zeigen Sie mithilfe des Satzes von Fubini, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx} [/mm] existiert und gleich [mm] \pi/2 [/mm] ist.

Hallo zusammen,
Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab sie nur hingeschrieben, weil ich dachte, dass sie für d) von Bedeutung sein könnte.
Meine Frage lautet:
Mir ist klar, dass [mm] \integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2, [/mm] aber was soll der Satz von Fubini da?
Vielen Dank im Vorraus!

        
Bezug
Satz von Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Fr 11.12.2009
Autor: fred97


> Es sei f: [mm][0,M]x[0,\infty) \to \IR[/mm] gegeben durch
> [mm]f(x,t)=sin(x)e^{-xt},[/mm] wobei M > 0
>  c) Zeigen Sie, dass
> [mm]\integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx}[/mm]
>  
> d) Zeigen Sie mithilfe des Satzes von Fubini, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}[/mm] existiert und
> gleich [mm]\pi/2[/mm] ist.
>  Hallo zusammen,
>  Aufgabe c) hab ich gelöst, das war nicht schwer. Ich hab
> sie nur hingeschrieben, weil ich dachte, dass sie für d)
> von Bedeutung sein könnte.
>  Meine Frage lautet:
>  Mir ist klar, dass
> [mm]\integral_{0}^{\infty}{\bruch{sin(x)}{x} dx}=\pi/2,[/mm] aber
> was soll der Satz von Fubini da?


Einfach mal probieren:

Du hast:  $ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}=\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] $

Nach Fubini: [mm] $\integral_{0}^{M}{\bruch{sin(x)}{x} dx} [/mm] = [mm] \integral_{0}^{\infty}{\integral_{0}^{M}{f(x,t) dt}\ dx}$ [/mm]

Das rechte Integral berechnen und dann $M [mm] \to \infty$ [/mm]

FRED


>  Vielen Dank im Vorraus!


Bezug
                
Bezug
Satz von Fubini: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:54 Fr 11.12.2009
Autor: derdickeduke

Danke schonmal für deine schnelle Antwort Fred!
Da komme ich nur leider auch nicht hin, oder ich hab mich verrechnet, das kann man ja nie ausschließen.
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\bruch{sin(x)}{x}}dx= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}-\bruch{cos(M)}{e^{Mt}t^2}+\bruch{1}{t^2}dt}= [/mm]
[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}{-\bruch{sin(x)}{e^{Mt}}}-\integral_{0}^{\infty}{\bruch{cos(M)}{e^{Mt}t^2}}+\integral_{0}^{\infty}{\bruch{1}{t^2}dt}= [/mm]
Und ab dann wird's unberechenbar, denn z.B. [mm] \limes_{M\rightarrow\infty}sin(M) [/mm] ist doch völlig uninterpretierbar.

Bezug
                        
Bezug
Satz von Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Sa 12.12.2009
Autor: Disap

Du hast geschrieben

$ [mm] \limes_{M\rightarrow\infty}\integral_{0}^{M}{\integral_{0}^{\infty}{sin(x)e^{-xt}dt}dx}\overbrace{=}^{Fubini}\limes_{M\rightarrow\infty}\integral_{0}^{\infty}{\integral_{0}^{M}{sin(x)e^{-xt}dt}dx}= [/mm] $

Und nun anders geschrieben

[mm] \limes_{M\rightarrow\infty}\integral_{0}^{\infty}sin(x){\integral_{0}^{M}{e^{-xt}dt}dx} [/mm]

Was ist die Stammfunktion von [mm] e^{-xt} [/mm] nach t integriert? Eine Mögliche ist

[mm] $-e^{- t*x} [/mm] /x$

da steht [mm] sin(\red{x}), [/mm] integrieren wirst du aber erst einmal nach t.

PS: Ich bin davon ausgegangen, dass weil im Ursprungsthread stand
$ [mm] \integral_{0}^{M}{\integral_{0}^{\infty}{f(x,t) dx}\ dt}$, [/mm]

dass du jetzt zuerst nach t integrierst und nicht nach x.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de