www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstige Transformationen" - Satz von Fubini
Satz von Fubini < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Fubini: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mo 17.01.2011
Autor: Aldiimwald

Aufgabe
Sei D das Gebiet, das sich aus dem Kegelstumpf

K = {(x, y, [mm] z)^{T} \in \IR^{3} [/mm] | [mm] \wurzel{x^2 + y^2} \le \bruch{-z+3}{2}, [/mm] z [mm] \ge [/mm] 1}

und dem Zylinder

Z = {(x, y, [mm] z)^{T} \in \IR^{3} [/mm] | [mm] x^2+y^2 \le [/mm] 1 [mm] \wedge [/mm] 0 [mm] \le [/mm] z [mm] \le1 [/mm] }

zusammensetzt
a) Bestimmen Sie das Volumen von D mit dem Satz von
Fubini.



[mm] \integral_{Z}^{}{1 d(x,y,z)} [/mm] + [mm] \integral_{K}^{}{1 d(x,y,z)} [/mm]

[mm] =\integral_{0}^{1}\integral_{-1}^{1}\integral_{-\wurzel{1-y^2}}^{\wurzel{1-y^2}}{1 d(x,y,z)} [/mm] + [mm] \integral_{1}^{3}\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}{1 d(x,y,z)} [/mm]

in der Skizze ist ein Zylinder gezeigt, der den Ursprung in (0,0,0), einen Radius von 1 und die Höhe 1 hat, darauf sitzt der Kegel der auf der Hohe (z-Koordinate) 1 beginnt und bis zu z=3 oben zusammenläuft (im Prinzip ein rundes Häuschen)

fangen wir mal mit dem Zylinder an, dieser geht in z richtung ja von 0 bis 1, daher ist diese Grenze schonmal klar, Radius 1 also geht die y Richtung von -1 bis 1, 2. Grenze damit auch klar, die letzte grenze ergibt sich dann aus der Formel die im angegebenen Gebiet steht, daher ist mir das ebenfalls klar.

Beim Kegel habe ich jedoch ein Problem, grenze 1-3 verstehe ich, wie man auf darauf [mm] (\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}) [/mm] kommt verstehe ich auch, das ergibt sich ja wieder aus der angegebenen Formel, aber wie setzt sich denn nun diese Grenze [mm] (\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}) [/mm] zusammen?

        
Bezug
Satz von Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 17.01.2011
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Aldiimwald,


> Sei D das Gebiet, das sich aus dem Kegelstumpf
>  
> K = {(x, y, [mm]z)^{T} \in \IR^{3}[/mm] | [mm]\wurzel{x^2 + y^2} \le \bruch{-z+3}{2},[/mm]
> z [mm]\ge[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1}

>  
> und dem Zylinder
>
> Z = {(x, y, [mm]z)^{T} \in \IR^{3}[/mm] | [mm]x^2+y^2 \le[/mm] 1 [mm]\wedge[/mm] 0 [mm]\le[/mm]
> z [mm]\le1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> zusammensetzt
>  a) Bestimmen Sie das Volumen von D mit dem Satz von
>  Fubini.
>  
>
> [mm]\integral_{Z}^{}{1 d(x,y,z)}[/mm] + [mm]\integral_{K}^{}{1 d(x,y,z)}[/mm]
>  
> [mm]=\integral_{0}^{1}\integral_{-1}^{1}\integral_{-\wurzel{1-y^2}}^{\wurzel{1-y^2}}{1 d(x,y,z)}[/mm]
> +
> [mm]\integral_{1}^{3}\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}{1 d(x,y,z)}[/mm]
>  
> in der Skizze ist ein Zylinder gezeigt, der den Ursprung in
> (0,0,0), einen Radius von 1 und die Höhe 1 hat, darauf
> sitzt der Kegel der auf der Hohe (z-Koordinate) 1 beginnt
> und bis zu z=3 oben zusammenläuft (im Prinzip ein rundes
> Häuschen)
>
> fangen wir mal mit dem Zylinder an, dieser geht in z
> richtung ja von 0 bis 1, daher ist diese Grenze schonmal
> klar, Radius 1 also geht die y Richtung von -1 bis 1, 2.
> Grenze damit auch klar, die letzte grenze ergibt sich dann
> aus der Formel die im angegebenen Gebiet steht, daher ist
> mir das ebenfalls klar.
>  
> Beim Kegel habe ich jedoch ein Problem, grenze 1-3 verstehe
> ich, wie man auf darauf
> [mm](\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}})[/mm]
> kommt verstehe ich auch, das ergibt sich ja wieder aus der
> angegebenen Formel, aber wie setzt sich denn nun diese
> Grenze [mm](\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}})[/mm]
> zusammen?


Damit der Ausdruck

[mm]\wurzel{\left(\bruch{-z+3}{2}\right)^2 -y^2}}[/mm]

definiert ist, muß

[mm]\left(\bruch{-z+3}{2}\right)^2 -y^2} \ge 0 [/mm]

sein.

Daher bestimmen sich die Grenzen für y aus der Gleichung

[mm]\left(\bruch{-z+3}{2}\right)^2 -y^2} = 0 [/mm]


Gruss
MathePower

Bezug
                
Bezug
Satz von Fubini: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mo 17.01.2011
Autor: Aldiimwald

ahh ja klar! Dankeschön!

(ist ne echte Qual gewesen die ganzen Integrale fehlerfrei im Formeleditor einzugeben^^)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de