www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Satz von Min&Max
Satz von Min&Max < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Min&Max: Verständnisfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:42 Fr 11.02.2011
Autor: stffn

Hallo liebe leute,

mir hat sich gerade eine Frage gestellt, bei der ihr mir bestimmt helfen könnt.

Undzwar geht es, wie das Thema schon sagt, um den Satz von Min&Max, nach dem ja in einem kompakten Intervall an den Intervallgrenzen immer Extrema sind.

Wenn ich jetzt eine Funktion auf eben Diese untersuchen soll, als Intervall aber z.B. folgendes definiert habe: [mm] [-\pi,0[ \cup ]0,\pi], [/mm] kann ich dann daraus einfach 2 kompakte intervalle machen (z.B. [mm] [-\pi,-1] [/mm] und [mm] [1,\pi]) [/mm] und daraus ableiten, dass bei [mm] -\pi [/mm] und [mm] \pi [/mm] Extremstellen sind?
Klingt irgendwie falsch, aber andererseits auch logisch, dass an einer geschlossenen Intervallgrenze Minimum oder Maximum ist.

Danke für eure Hilfe, schönes Wochenende.

        
Bezug
Satz von Min&Max: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Fr 11.02.2011
Autor: leduart

Hallo
Kannst du die Vorraussetzungen für deinen Satz mal nennen? Für stetige funktionen gilt er jedenfalls nicht.
Gruss leduart


Bezug
                
Bezug
Satz von Min&Max: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Sa 12.02.2011
Autor: stffn

Hi
Ich habe das so gelernt, dass der Satz halt dann gilt, wenn man ein kompaktes Intervall definiert hat (also ein geschlossenes Intervall), auf dem die Funktion stetig ist.
Mehr kann ich dazu eigentlich nicht sagen. Ich hab den Satz halt bisher benutzt, wenn es darum ging, Extremstellen einer Funktion auf eben so einem Intervall zu bestimmen. Da hab ich dann einfach gesagt, "nach dem Satz von Min&Max gibt es an den Intervallgrenzen extremstellen". Das wurde mir auch nie als falsch angestrichen.

Bezug
                        
Bezug
Satz von Min&Max: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Sa 12.02.2011
Autor: kamaleonti


> Hi
>  Ich habe das so gelernt, dass der Satz halt dann gilt,
> wenn man ein kompaktes Intervall definiert hat (also ein
> geschlossenes Intervall), auf dem die Funktion stetig ist.

An den Rändern des abgeschlossenen Intervalls, muss die Ableitung nicht Null sein (Beispiel [mm] f:[-1,1]\to\IR, x\mapsto x^2 [/mm] ist stetig, aber f'(-1)=-2,f'(1)=2). Das aber ist bei der mir bekannten Definition von Extremstellen notwendig.

Wenn man den Funktionsgraph unter Einschränkung des kompakten Intervalls betrachtet, ist an den Rändern aber trotzdem eine Art lokales Maximum oder Minimum gegeben. Das ist aber klar, weil die Funktion über die abgeschlossene Grenze hinaus nicht weiter definiert ist.
Ihr bezeichnet diese Stelle eben auch als Extremstellen ;-)

>  Mehr kann ich dazu eigentlich nicht sagen. Ich hab den
> Satz halt bisher benutzt, wenn es darum ging, Extremstellen
> einer Funktion auf eben so einem Intervall zu bestimmen. Da
> hab ich dann einfach gesagt, "nach dem Satz von Min&Max
> gibt es an den Intervallgrenzen extremstellen". Das wurde
> mir auch nie als falsch angestrichen.

Gruß

Bezug
                        
Bezug
Satz von Min&Max: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 12.02.2011
Autor: leduart

hallo
eine streng monotone Funktion nimmt an den Rändern eines abg. Intervalls Extrema an, eine stetige Funktion nicht unbedingt.
betrachte etwa sin(x) in [mm] [0,2*\pi] [/mm]
kannst du deinen Satz mal vollständig zitieren? mit genauen Vorraussetzungen? und wie ist min und max definiert?
Irgendwas ist hier schief.
Gruss leduart


Bezug
                                
Bezug
Satz von Min&Max: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Sa 12.02.2011
Autor: stffn

Danke erstmal für die Antworten.
Der Satz wurde uns so "diktiert":

"Eine Funktion, die in einem kompakten Intervall [a,b] definiert ist und in diesem stetig ist, hat an den Intervallgrenzen IMMER jeweils eine Extremstelle."

Ob diese lokal oder global ist, wird dabei offen gelassen. Bei streng monotonen Funktionen sind sie dann global, und bei nicht streng monotonen können es auch nur lokale sein.

hat sin(x) nicht für das Intervall [mm] [0,2\pi] [/mm] dann auch an den Grenzen ein lokales Minimum (links) und ein lok. Max (rechts)?

So habe ich das bisher verstanden.


Bezug
                                        
Bezug
Satz von Min&Max: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 12.02.2011
Autor: leduart

Hallo
dann hast du recht, lokale max und Min liegen bei abg. Intervall am raand. damit hast du auch bei + und [mm] -˜\pi [/mm] deiner ersten Frage Extrmwerte in diesem sinn.
Gruss leduart


Bezug
                                                
Bezug
Satz von Min&Max: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mi 16.02.2011
Autor: stffn

Danke euch nochmal ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de