www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Satz von Wilson
Satz von Wilson < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Wilson: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Mi 03.02.2010
Autor: T_sleeper

Aufgabe
Sei [mm] p\equiv [/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von Wilson:
[mm] ((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p [/mm]

Hallo,

der Satz von Wilson sagt: [mm] (p-1)!\equiv [/mm] -1 mod p.
Dann weiß ich, dass [mm] ((p-1)!)^2\equiv [/mm] 1 mod p ist, aber wieso kann ich aus der Fakultät die zwei rauskürzen und das gilt immer noch?

        
Bezug
Satz von Wilson: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mi 03.02.2010
Autor: SEcki


> Sei [mm]p\equiv[/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von
> Wilson:
>  [mm]((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p[/mm]
>  Hallo,
>  
> der Satz von Wilson sagt: [mm](p-1)!\equiv[/mm] -1 mod p.
>  Dann weiß ich, dass [mm]((p-1)!)^2\equiv[/mm] 1 mod p ist, aber
> wieso kann ich aus der Fakultät die zwei rauskürzen und
> das gilt immer noch?

Also ich lese das so: Erst p-1 durch 2 teilen, dann Fakultät. Also zB bei der 19 wäre das [m]9! \mbox{ mod } 19[/m]. Das sind die Hälfte aller Zahlen, wobei mit x eben [m]-x[/m] nicht drin ist. Wenn du also das Produkt quadriest erhälst du mit Wilson 1 - jetzt musst du dir überlegen, dass die Zahl vorher schon 1 war, und nicht -1. Dazu muss man benutzen, dass [m](p-1)/2[/m] ungerade ist - nach Vorraussetzung! Hast du jetzt Ideen?

SEcki

Bezug
        
Bezug
Satz von Wilson: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Do 04.02.2010
Autor: SEcki


> Sei [mm]p\equiv[/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von
> Wilson:
>  [mm]((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p[/mm]
>  Hallo,
>  
> der Satz von Wilson sagt: [mm](p-1)!\equiv[/mm] -1 mod p.
>  Dann weiß ich, dass [mm]((p-1)!)^2\equiv[/mm] 1 mod p ist, aber
> wieso kann ich aus der Fakultät die zwei rauskürzen und
> das gilt immer noch?

Also mal ausfürhlicher: sei [m]X=\{k|1\le k \le (p-1)/2\}[/m]. Dann ist mit [m]x\in X[/m] allerdings [m]-x\notin X[/m]. Nun definiere ich [m]y:=\prod_{x\in X} x[/m], damit ist [m]\prod_{x\in X} (-x)=(-1)^{(p-1)/2}*y=-y[/m]. Insgesamt also (nach Wilson): [m]y*(-y)=-1[/m], also [m]y^2=1[/m], also [m]y=\pm 1[/m]. Du musst noch [m]y=1[/m] folgern, seh ich gerade nicht.

SEcki

Bezug
        
Bezug
Satz von Wilson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Do 04.02.2010
Autor: abakus

Hallo,
offensichtlich gilt
[mm] (p-1)\equiv [/mm] -1 mpd p
[mm] (p-2)\equiv [/mm] -2 mpd p
[mm] (p-3)\equiv [/mm] -3 mpd p
usw.

Damit lassen die Faktoren in der "vorderen Häflte" von (p-1)! (also 1 bis (p-1)/2) jeweils die entgegengesetzten Reste wie die Faktoren in der hinteren Hälfte (von p-1 an abwärts bis zur Mitte).
Hilft das beim Verständnis?
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de