www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Schachtelung ohne innere Zahl
Schachtelung ohne innere Zahl < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schachtelung ohne innere Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Sa 07.04.2018
Autor: Mr.Hazl

Aufgabe
Zeigen Sie am Beispiel der Schachtelung [mm] <(0;\bruch{1}{n})>,n\in\IN [/mm] von offenen Intervallen aus [mm] \IR, [/mm] dass sie keine reele Zahl als innere Zahl besitzt.

Einen schönen guten Tag,

meine Überlegung zu der Aufgabe ist, dass zu jeder positiven reellen Zahl eine größere natürliche Zahl existiert.

Leider habe ich keine Idee wie man diesen Sachverhalt mathematisch korrekt notiert, daher wäre es nett wenn mir jemand einen Tipp geben könnte.

Mit freundlichen Grüßen


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schachtelung ohne innere Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 07.04.2018
Autor: Diophant

Hallo,

> Zeigen Sie am Beispiel der Schachtelung
> [mm]<(0;\bruch{1}{n})>,n\in\IN[/mm] von offenen Intervallen aus [mm]\IR,[/mm]
> dass sie keine reele Zahl als innere Zahl besitzt.
> Einen schönen guten Tag,

>

> meine Überlegung zu der Aufgabe ist, dass zu jeder
> positiven reellen Zahl eine größere natürliche Zahl
> existiert.

>

> Leider habe ich keine Idee wie man diesen Sachverhalt
> mathematisch korrekt notiert, daher wäre es nett wenn mir
> jemand einen Tipp geben könnte.

>

Deine Idee läuft ja auf die Anwendung des []Archimedischen Axioms hinaus.

Im Prinzip musst du also nur begründen, weshalb es zu jeder positiven reellen Zahl x eine natürliche Zahl n mit

[mm] \frac{1}{n}
gibt.

Nach einer Multiplikation der obigen Ungleichung und dem Verweis auf das o.g. Axiom steht dann schon alles notwendige da, um den Sachverhalt zu beweisen.


Gruß, Diophant

Bezug
                
Bezug
Schachtelung ohne innere Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Sa 07.04.2018
Autor: Mr.Hazl

Vielen Dank erstmal für die schnelle Antwort.

Könnte man zum Beispiel folgendermaßen begründen?

Für [mm] x\in\IR>0 [/mm] gibt es ein n mit [mm] \bruch{1}{n}
Könntest du mir bitte noch mal genauer erläutern was du mit Multiplikation da direkt meinst?
Mir fällt es etwas schwer, zu jedem y>x>0 existiert eine natürliche Zahl [mm] n\in\IN [/mm] mit nx>y, auf die Aufgabe anzuwenden.

Mit freundlichen Grüßen


Bezug
                        
Bezug
Schachtelung ohne innere Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Sa 07.04.2018
Autor: Diophant

Hallo,

> Vielen Dank erstmal für die schnelle Antwort.

>

> Könnte man zum Beispiel folgendermaßen begründen?

>

> Für [mm]x\in\IR>0[/mm] gibt es ein n mit [mm]\bruch{1}{n}

>

Das ist mein Grundgedanke, genau.

> Könntest du mir bitte noch mal genauer erläutern was du
> mit Multiplikation da direkt meinst?
> Mir fällt es etwas schwer, zu jedem y>x>0 existiert eine
> natürliche Zahl [mm]n\in\IN[/mm] mit nx>y, auf die Aufgabe
> anzuwenden.

Also, seien [mm] x,y\in\IR [/mm] mit [mm]0y[/mm]. Das ist das Archimedische Axiom.

Nun sei y=1 und

0<x<1

Dann gibt es n mit

nx>1 bzw. 1<nx.

Da n eine natürliche Zahl ist und somit positiv, folgt (mit Division durch n):

[mm] \frac{1}{n}
Vorhin hatte ich es andersherum gedacht, daher der Tipp mit der Multiplikation. So herum ist es aber vielleicht verständlicher.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de