www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schargerade parallel zur Ebene
Schargerade parallel zur Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schargerade parallel zur Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 09.06.2009
Autor: nunu

Ich habe ein kleines Problem mit der folgenden Aufgabe:
E:x [mm] \begin{pmatrix} 1 \\ -4 \\ -25 \end{pmatrix} [/mm] + r*  [mm] \begin{pmatrix} -3 \\ 11 \\ 24 \end{pmatrix} [/mm] + s *  [mm] \begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix} [/mm]
g: x  [mm] \begin{pmatrix} -2k+4 \\ 3 \\ -2k-4 \end{pmatrix} [/mm] + t *  [mm] \begin{pmatrix} k \\ 0 \\ k+2 \end{pmatrix} [/mm]

Ich soll jetzt herausfinden welche Schargerade parallel zur Ebene ist.
Kann ich jetzt einfach in dem ich die beiden Richtungsvektoren der Ebene mit dem Richtungsvektor der Gerade gleichsetze bestimmen für welches k Gerade und Ebene komplanar zu einander sind und dann brauche ich nur noch eine Punktprobe.
Dafür setze ich einfach den Stützvektor der Geradengleichung mit der Ebenengleichung gleich und bekomme dann wieder das gleiche k wie bei der Überprüfung auf Kollinearität?

        
Bezug
Schargerade parallel zur Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 09.06.2009
Autor: Al-Chwarizmi


> Ich habe ein kleines Problem mit der folgenden Aufgabe:
>   E:x =  [mm] \begin{pmatrix} 1 \\ -4 \\ -25 \end{pmatrix} + r*\begin{pmatrix} -3 \\ 11 \\ 24 \end{pmatrix}+ s *\begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix}[/mm]
>  g: x = [mm] \begin{pmatrix} -2k+4 \\ 3 \\ -2k-4 \end{pmatrix}+ t*\begin{pmatrix} k \\ 0 \\ k+2 \end{pmatrix} [/mm]
>  
> Ich soll jetzt herausfinden welche Schargerade parallel zur
> Ebene ist.
>  Kann ich jetzt einfach in dem ich die beiden
> Richtungsvektoren der Ebene mit dem Richtungsvektor der
> Gerade gleichsetze bestimmen für welches k Gerade und Ebene
> komplanar zu einander sind

Was meinst du mit "Gleichsetzen" ???

Was du machen kannst, ist, dass du den Richtungs-
vektor der Geraden als Linearkombination der Spannvektoren
der Ebene schreibst und dann den Wert (bzw. die Werte) von
k suchst, für welche(n) dies möglich ist.

>  ..... und dann brauche ich nur noch eine Punktprobe.     [verwirrt]

     Wozu ?

Eine andere Möglichkeit wäre die, zuerst einen Normalen-
vektor [mm] \vec{n} [/mm]  der Ebene zu berechnen. Dann kannst du
dir klar machen, welche Beziehung zwischen  [mm] \vec{n} [/mm]  und
dem Richtungsvektor von g bestehen muss, damit g parallel
zu E wird.

LG    Al-Chw.

Bezug
                
Bezug
Schargerade parallel zur Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 09.06.2009
Autor: nunu

Ich bruache die Punktprobe um zu Überprüfen das k was ich als Ergebnis bekomme auf der Ebene liegt oder Parallel zu Ebene liegt.
Deine Lösung versthe ich nicht

Bezug
                        
Bezug
Schargerade parallel zur Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 09.06.2009
Autor: Al-Chwarizmi


> Ich brauche die Punktprobe um zu Überprüfen das k was ich
> als Ergebnis bekomme auf der Ebene liegt oder parallel zur
> Ebene liegt.

(du meinst die Gerade zum entsprechenden k)

Nun, eigentlich ist eine Gerade, die in einer Ebene liegt,
auch parallel zur Ebene, wenn man Parallelität nicht
über "keine gemeinsamen Punkte" definiert.

>  Deine Lösung verstehe ich nicht

.... was genau ist dir daran nicht klar ?


Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de