www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Schatten
Schatten < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schatten: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 11.10.2006
Autor: arual

Aufgabe
Bestimmen Sie rechnerisch einen Schatten auf den Randflächen des 1. Oktanden.

Hallo!

Wir haben gerade in Mathe gehabt, wie man Spurpunkte berechnet und dazu das Beispiel des Schattens als Aufgabe bekommen. Ich hab das mal durchgerechnet und wäre euch total dankbar, wenn ihr es mal nachrechnen könntet und mir sagt, ob ich das so machen kann.

Ich hab auch ne Skizze gemacht, ich hoffe mal ihr versteht sie.

Gegeben war: P(4;3;0) Q(4;3;6)
Es fällt paralles Licht mit dem Richtungsvektor [mm] \vektor{-2 \\ 1 \\ -2}. [/mm]

Also ich sollte jetzt die Punkte Q' und Q'' bestimmen, hier meine Lösung:

1) Gleichung von g: [mm] \vec{x}=\vektor{4 \\ 3 \\ 6}+r*\vektor{-2 \\ 1 \\ -2} [/mm]
    Ich hab einfach den Punkt Q genommen und dann den Richtungsvektor,
    weil es ja paralles Licht sein soll. Ist das richtig?

2) Q' müsste jetzt der Spurpunkt der yz-Ebene sein.
    Da komme ich auf Q'(0;5;2)

3) So jetzt habe ich eine Gleichung für die Gerade aufgestellt, die durch Q' geht und senkrecht auf der y-Achse steht:
[mm] \vec{x}=\vektor{0 \\ 5 \\ 2}+r*\vektor{0 \\ 0 \\ -1} [/mm]
Dann hab ich noch eine für die y-Achse selbst aufgestellt:
[mm] \vec{x}=\vektor{0 \\ 0 \\ 0}+s*\vektor{0 \\ 1 \\ 0} [/mm]

Die beiden hab ich jetzt gleichgesetzt um den Schnittpunkt rauszubekommen und durch ein Gleichungssystem r=2 und s=5 rausbekommen. Das hab ich dann wieder in die Gleichungen eingesetzt und kam auf den Schnittpunkt S(0;5;0) Das müsste jetzt Q'' sein, oder?

So das wäre meine Lösung, ich hoffe ihr versteht was ich meine. Kann ich das so lösen? Ich würde mich total freuen, wenn ihr mir sagt, ob es richtig ist, da ich im Moment etwas unsicher bin was Matheaufgaben angeht.

Schon mal vielen Dank im Voraus.

LG arual

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Schatten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 15.10.2006
Autor: Marc

Hallo arual!

> Bestimmen Sie rechnerisch einen Schatten auf den
> Randflächen des 1. Oktanden.
>  Hallo!
>  
> Wir haben gerade in Mathe gehabt, wie man Spurpunkte
> berechnet und dazu das Beispiel des Schattens als Aufgabe
> bekommen. Ich hab das mal durchgerechnet und wäre euch
> total dankbar, wenn ihr es mal nachrechnen könntet und mir
> sagt, ob ich das so machen kann.
>  
> Ich hab auch ne Skizze gemacht, ich hoffe mal ihr versteht
> sie.

Mir ist nicht ganz klar, wo der Schatten entsteht. Soll der 1. Oktand sozusagen als "Kasten" betrachtet werden, mit der xy-Ebene als "Boden"?
Dann würde ich Deine Konstruktion verstehen, denn dann kann ja kein Schatten unterhalb der xy-Ebene entstehen
Anderfalls müßtest Du mit dem Punkt P ebenfalls eine Parallelprojektion auf die yz-Ebene durchführen und den Punkt P' bestimmen.
  

> Gegeben war: P(4;3;0) Q(4;3;6)
> Es fällt paralles Licht mit dem Richtungsvektor [mm]\vektor{-2 \\ 1 \\ -2}.[/mm]
>  
> Also ich sollte jetzt die Punkte Q' und Q'' bestimmen, hier
> meine Lösung:
>  
> 1) Gleichung von g: [mm]\vec{x}=\vektor{4 \\ 3 \\ 6}+r*\vektor{-2 \\ 1 \\ -2}[/mm]
>  
>     Ich hab einfach den Punkt Q genommen und dann den
> Richtungsvektor,
> weil es ja paralles Licht sein soll. Ist das richtig?

[ok]
  

> 2) Q' müsste jetzt der Spurpunkt der yz-Ebene sein.
>      Da komme ich auf Q'(0;5;2)

[ok]
  

> 3) So jetzt habe ich eine Gleichung für die Gerade
> aufgestellt, die durch Q' geht und senkrecht auf der
> y-Achse steht:
> [mm]\vec{x}=\vektor{0 \\ 5 \\ 2}+r*\vektor{0 \\ 0 \\ -1}[/mm]
>  Dann
> hab ich noch eine für die y-Achse selbst aufgestellt:
>  [mm]\vec{x}=\vektor{0 \\ 0 \\ 0}+s*\vektor{0 \\ 1 \\ 0}[/mm]
>  
> Die beiden hab ich jetzt gleichgesetzt um den Schnittpunkt
> rauszubekommen und durch ein Gleichungssystem r=2 und s=5
> rausbekommen. Das hab ich dann wieder in die Gleichungen
> eingesetzt und kam auf den Schnittpunkt S(0;5;0) Das müsste
> jetzt Q'' sein, oder?

[ok]
Den Punkt S hätte man natürlich auch sofort angeben können, aus den Koordinaten von Q', denn es handelt sich ja hier sozusagen um einen Parallelprojektion entlang der Koordinatenachsen.
  

> So das wäre meine Lösung, ich hoffe ihr versteht was ich
> meine. Kann ich das so lösen? Ich würde mich total freuen,
> wenn ihr mir sagt, ob es richtig ist, da ich im Moment
> etwas unsicher bin was Matheaufgaben angeht.

Ja, alles richtig.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de