www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Schema Stochastik!!
Schema Stochastik!! < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schema Stochastik!!: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:57 Mo 12.01.2004
Autor: Phil

Gibt es ein Entwurf, wie man an Stochstikaufgaben(Bernoulli, laplace) heran geht??

Ich schreibe morgen eine Klausur und tue mir schwer welche Formel in anweden muss.......
Es wäre super, wenn ihr mir eins entwerfen könntet oder ssagen wo es so etwas gibt. Mit hinweisen.........

Da ich schwierigkeiten habe wleche Formeln ich anwenden muss......

Wäre super klasse!!

        
Bezug
Schema Stochastik!!: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mo 12.01.2004
Autor: Stefan

Hallo Phil,

Willkommen im Matheraum! :-)

> Gibt es ein Entwurf, wie man an
> Stochstikaufgaben(Bernoulli, laplace) heran geht??

Das ist viel zu allgemein. Du musst uns den Aufgabentyp schon genauer beschreiben. Es gibt hunderte von Aufgabentypen zu Bernoulli-Verteilungen und es ist auch nicht klar, welcher Satz/Formel von Laplace gemeint ist, denn auch davon gibt es mehrere.

Eine Beispielaufgabe wäre auch nicht schlecht...
  

> Ich schreibe morgen eine Klausur und tue mir schwer welche
> Formel in anweden muss.......
>  Es wäre super, wenn ihr mir eins entwerfen könntet oder
> ssagen wo es so etwas gibt. Mit hinweisen.........

Ich brauche erst Infos. Ob ich dazu dann heute Zeit habe, kann ich aber trotzdem leider nicht versprechen. Ich werde es dann versuchen...
  
Bis später...

Viele Grüße
Stefan

Bezug
                
Bezug
Schema Stochastik!!: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:39 Mo 12.01.2004
Autor: Phil

Der Hersteller behauptet, das höchtens 5% der geglieferten weare seien Aussschuss. Der Empfänger befindet über die Annahme der Sendung folgendem Prüfverfahren:
Jeder Lieferung wird eine Stichprobe entnommen von 10 stück und untersucht. Enthält mehr als 2 defekte Stücke, so wird sie abgelehnt. Bei genau 2 Ausschussmöglichkeiten wird eine weitere Stichprobe entnommen dieses mal 18 stück. Enthält diese höchstens ein Ausschussstück, so wird die Sendung angenommen,
In wieviel Prozen aller Fälle entscheidet der Empfänger aufgrund seines Prüfverfahrens richti, wenn man annimt, dass die Herstellerbehauptung zutrifft und der Ausschussanteil bei der Stichprobenentnahme sich nicht verändert?

So was muss ich nun alles machen???
MFG Phil

Bezug
                        
Bezug
Schema Stochastik!!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Mo 12.01.2004
Autor: Stefan

Hallo,

ich habe leider auf meiner Arbeit viel zu tun (übermorgen wird unser Institut vom Wissenschaftsrat begutachtet) und schaffe es nicht heute eine Antwort zu geben. Es bleibt zu hoffen, dass dir vielleicht jemand anderes hilft.

Ich bitte um dein Verständnis.

Viele Grüße
Stefan

Bezug
                        
Bezug
Schema Stochastik!!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 12.01.2004
Autor: Stefan

Hallo Phil,

ich bin mir selber nicht sicher, ob ich die Aufgabe richtig verstehe.

Nehmen wir mal an, die Hypothese sei richtig. Es sei [mm]p[/mm] die Wahrscheinlichkeit, dass eine Ware einen Ausschuss liefert. Dann gilt also: [mm]p \le 0.05[/mm]

Wir betrachten nur den "extremen" Fall [mm]p=0.05[/mm].

Es sei [mm]X[/mm] die Zufallsvariable, die misst, wieviel Ausschussware es beim ersten Test gegeben hat und [mm]Y[/mm] die Zufallsvariable, die misst, wieviel Ausschussware es beim zweiten Test gegeben hat.

Dann ist [mm]X[/mm] binomialverteilt mit  [mm]n=10[/mm] und [mm]p=0.05[/mm].

Dann ist [mm]Y[/mm] gegeben [mm]X=2[/mm] binomialverteilt mit [mm]n=18[/mm] und [mm]p=0.05[/mm].

Zu berechnen ist nun die Wahrscheinlichkeit, dass der Empfänger die Ware nicht zu unrecht ablehnt, also die Wahrscheinlichkeit:

[mm]P(X \le 1) + P(Y \le 1, X=2) = P(X\le 1) + P(Y \le 1 | X=2) \cdot P(X = 2)[/mm]

Nun gilt:

[mm]P(X \le 1) = B_{10;0.05}(0) + B_{10;0.05}(1)[/mm],

[mm]P(X=2) = B_{10;0.05}(2)[/mm],

[mm]P(Y \le 1| X=2) = B_{18;0.05}(0) + B_{18;0.05}(1)[/mm].

Das musst du nun alles einsetzen.

Ich weiß jetzt nicht, ob das alles war. Da du was von Laplace geschrieben hattest, gehe ich mal davon aus, dass ihr die Binomialverteilung durch die Normalverteilung approximieren sollt. Stimmt das?

Das geht hier allerdings nicht, da die Faustformel [mm]npq \ge 9[/mm] nicht erfüllt ist.

Tut mir leid, für detailliertere Erklärungen habe ich keine Zeit. Vielleicht antwortet dir ja noch jemand genauer.

Was davon kommt dir bekannt vor, was ist neu?

Ich weiß nämlich immer noch nicht genau, was ihr im Unterricht gemacht habt. Man kann die Aufgabe, je nach Vorwissen, auf unterschiedlichen Niveaus lösen.

Alles Gute
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de