www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Schiefer Wurf
Schiefer Wurf < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schiefer Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Di 23.11.2010
Autor: dreamweaver

Aufgabe
Ein Ball wird aus einer Höhe h unter einem Winkel [mm] \alpha [/mm] zur Horizontalen weggeworfen und soll einen Punkt in einer Entfernung w auf dem Boden treffen.
Wie groß muss seine Anfangsgeschwindigkeit [mm] v_{0} [/mm] sein?

Angaben:
h = 1,54 m
[mm] \alpha [/mm] = 30°
w = 21,3 m

Ich weiß einfach nicht wie ich die obere Aufgabe angehen soll.
Ich hab ja die Bewegungsgleichung h = [mm] \bruch{g\*t^{2}}{2}+v_{z}\*t [/mm]

Ich weiß das
[mm] v_{x} [/mm] = [mm] v_{0} \* cos(\alpha) [/mm]
[mm] v_{z} [/mm] = [mm] v_{0} \* sin(\alpha) [/mm] ist

Jetzt hab ich aber weder [mm] v_{0} [/mm] noch t gegeben.
Ich hab mir dann überlegt, dass die Weite w = [mm] v_{x} \* [/mm] t sein müsste oder?
Wenn ich das umforme erhalte ich t = [mm] \bruch{w}{v_{x}}. [/mm]

Wenn ich das jetzt in die Bewegungsgleichung einsetze erhalte ich folgende Formel:
h = [mm] \bruch{g\*(\bruch{w}{v_{0}\*cos(\alpha)})^{2}}{2} [/mm] + [mm] v_{0}\*sin(\alpha)\*\bruch{w}{v_{0}\*cos(\alpha)} [/mm]

Stimmt das bisher, oder bin ich das ganze falsch angegangen?

Danke im Voraus

Lg

        
Bezug
Schiefer Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Di 23.11.2010
Autor: Steffi21

Hallo,
für die Wurfweite w mit Anfangshöhe h gilt:

[mm] w=\bruch{v_0^{2}*sin(2\alpha)}{2*g}*\pmat{1+\wurzel{1+\bruch{2*h*g}{v_0^{2}*sin^{2}(\alpha)}}} [/mm]

Steffi



Bezug
        
Bezug
Schiefer Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 23.11.2010
Autor: leduart

Hallo
G wirkt nach unten, muss also ein negatives Vorzeichen haben.
sonst ist dein Ansatz richtig.
Gruss leduart


Bezug
                
Bezug
Schiefer Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Mi 24.11.2010
Autor: dreamweaver

Dann versuche ich es folgendermaßen umzuformen:

$h =  [mm] \bruch{-g*(\bruch{w}{v_{0}*cos(\alpha)})^{2}}{2} [/mm] + [mm] v_{0}*sin(\alpha)*\bruch{w}{v_{0}*cos(\alpha)} [/mm] $

$h =  [mm] \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} [/mm] + [mm] \bruch{v_{0}*sin(\alpha)*w}{v_{0}*cos(\alpha)} [/mm] $ (hier kürzt sich das [mm] v_{0} [/mm] weg)

$h * [mm] cos(\alpha) [/mm] =  [mm] \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} [/mm] + [mm] sin(\alpha)*w$ [/mm]

[mm] $\bruch{h * cos(\alpha)}{sin(\alpha)*w} [/mm] =  [mm] \bruch{-g*w^{2}}{2*v_{0}^{2}*cos(\alpha)^{2}}$ [/mm]

[mm] $\bruch{h * cos(\alpha)}{-g*w^{3}*sin(\alpha)} [/mm] =  [mm] \bruch{1}{2*v_{0}^{2}*cos(\alpha)^{2}}$ [/mm]

[mm] $\bruch{2*h * cos(\alpha)^{3}}{-g*w^{3}*sin(\alpha)} [/mm] =  [mm] \bruch{1}{v_{0}^{2}}$ [/mm]

[mm] $\bruch{-g*w^{3}*sin(\alpha)}{2*h * cos(\alpha)^{3}} [/mm] = [mm] v_{0}^{2}$ [/mm]

[mm] $\wurzel{\bruch{-g*w^{3}*sin(\alpha)}{2*h * cos(\alpha)^{3}}} [/mm] = [mm] v_{0}$ [/mm]


Rauskommen soll für [mm] v_{0} [/mm] ca. 14.4 m/s. Ich komm einfach nicht weiter -.-

Hab ich falsch umgeformt? Was hab ich falsch gemacht?
Bitte helft mir ich verzweifle langsam :(

Lg

Bezug
                        
Bezug
Schiefer Wurf: falsch umgeformt
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 24.11.2010
Autor: Loddar

Hallo dreamweaver!


> [mm]h = \bruch{-g*(\bruch{w}{v_{0}*cos(\alpha)})^{2}}{2} + v_{0}*sin(\alpha)*\bruch{w}{v_{0}*cos(\alpha)}[/mm]
>  
> [mm]h = \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} + \bruch{v_{0}*sin(\alpha)*w}{v_{0}*cos(\alpha)}[/mm]
> (hier kürzt sich das [mm]v_{0}[/mm] weg)

Bis hierhin sehe ich keinen Fehler.


> [mm]h * cos(\alpha) = \bruch{\bruch{-g*w^{2}}{v_{0}^{2}*cos(\alpha)^{2}}}{2} + sin(\alpha)*w[/mm]

[notok] Wenn du die gleichung mit [mm] $\cos(\alpha)$ [/mm] multiplizierst, musstd Du das auch auf den ersten Bruch auf der rechten Seite machen. Derselbe Fehler zieht sich dann durch.

Bedenke, dass beide Terme mit einem Pluszeichen verbunden sind.


Gruß
Loddar


Bezug
                                
Bezug
Schiefer Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Do 25.11.2010
Autor: dreamweaver

Danke, so, noch ein Versuch

$ h = [mm] \bruch{\bruch{-g\cdot{}w^{2}}{v_{0}^{2}\cdot{}cos(\alpha)^{2}}}{2} [/mm] + [mm] \bruch{v_{0}\cdot{}sin(\alpha)\cdot{}w}{v_{0}\cdot{}cos(\alpha)} [/mm] $

$ h = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}} [/mm] + [mm] \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} [/mm] $

$ h - [mm] \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}$ [/mm]

$ [mm] h\cdot{}cos(\alpha)^{2} [/mm] - [mm] \bruch{sin(\alpha)\cdot{}w\cdot{}cos(\alpha)^{2}}{cos(\alpha)} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$ [/mm]     (hier kürzt sicht jetzt das [mm] $cos(\alpha) [/mm] im Nenner weg)

$ [mm] h\cdot{}cos(\alpha)^{2} [/mm] - [mm] sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$ [/mm]

$ [mm] 2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{v_{0}^{2}}$ [/mm]

$ [mm] v_{0}^{2}\cdot{}2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] v_{0}^{2}\cdot{}2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) [/mm] = [mm] -g\cdot{}w^{2}$ [/mm]


$ [mm] v_{0}^{2}\cdot{}(2\cdot{}h\cdot{}cos(\alpha)^{2} [/mm] - [mm] 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha)) [/mm] = [mm] -g\cdot{}w^{2}$ [/mm]

$ [mm] v_{0}^{2} [/mm] = [mm] \bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}$ [/mm]

$ [mm] v_{0} [/mm] = [mm] \wurzel{\bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}}$ [/mm]

Mit dieser Formel komm ich auf 16,6 m/s. Richtig ist allerdings 14,64 m/s.

Was hab ich schon wieder falsch gemacht? -.-

Lg



Bezug
                                        
Bezug
Schiefer Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Do 25.11.2010
Autor: M.Rex

Hallo


> Danke, so, noch ein Versuch
>  
> [mm]h = \bruch{\bruch{-g\cdot{}w^{2}}{v_{0}^{2}\cdot{}cos(\alpha)^{2}}}{2} + \bruch{v_{0}\cdot{}sin(\alpha)\cdot{}w}{v_{0}\cdot{}cos(\alpha)}[/mm]
>  
> [mm]h = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}} + \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)}[/mm]
>  
> [mm]h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}[/mm]

Bis hier ist alles okay, jetzt würde ich direkt mal mit [mm] v_{0}^{2} [/mm] multiplizieren, so dass du:


[mm]h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)} = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}\cdot{}cos(\alpha)^{2}}[/mm]
[mm]\gdw v_{0}^{2}*\left(h - \bruch{sin(\alpha)\cdot{}w}{cos(\alpha)}\right)=\bruch{-g\cdot{}w^{2}}{2\cdot{}cos(\alpha)^{2}}[/mm]

erhältst.
Jetzt evtl noch umformen zu

[mm] $\gdw v_{0}^{2}*\left(h-w*\tan(alpha)\right)=\bruch{-g\cdot{}w^{2}}{2\cdot{}cos(\alpha)^{2}}$, [/mm]

und das ganze wird relativ schön.


>  
> $ [mm]h\cdot{}cos(\alpha)^{2}[/mm] -
> [mm]\bruch{sin(\alpha)\cdot{}w\cdot{}cos(\alpha)^{2}}{cos(\alpha)}[/mm]
> = [mm]\bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}$[/mm]     (hier
> kürzt sicht jetzt das [mm]$cos(\alpha)[/mm] im Nenner weg)
>  
> [mm]h\cdot{}cos(\alpha)^{2} - sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = \bruch{-g\cdot{}w^{2}}{2\cdot{}v_{0}^{2}}[/mm]
>
> [mm]2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = \bruch{-g\cdot{}w^{2}}{v_{0}^{2}}[/mm]
>
> [mm]v_{0}^{2}\cdot{}2\cdot{}h\cdot{}cos(\alpha)^{2} - v_{0}^{2}\cdot{}2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha) = -g\cdot{}w^{2}[/mm]
>
>
> [mm]v_{0}^{2}\cdot{}(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha)) = -g\cdot{}w^{2}[/mm]
>
> [mm]v_{0}^{2} = \bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}[/mm]
>
> [mm]v_{0} = \wurzel{\bruch{-g\cdot{}w^{2}}{(2\cdot{}h\cdot{}cos(\alpha)^{2} - 2\cdot{}sin(\alpha)\cdot{}w\cdot{}cos(\alpha))}}[/mm]
>
> Mit dieser Formel komm ich auf 16,6 m/s. Richtig ist
> allerdings 14,64 m/s.

Das kann schon ein Rundungsfehler sein, gerechnet hast du auf den ersten flüchtigen Blick korrekt.

>  
> Was hab ich schon wieder falsch gemacht? -.-
>  
> Lg
>  
>  


Bezug
                                                
Bezug
Schiefer Wurf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 25.11.2010
Autor: dreamweaver

Alles klar, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de