www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Schiefsymetrische Matrix
Schiefsymetrische Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schiefsymetrische Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Sa 30.06.2007
Autor: Zerwas

Aufgabe
Sei [mm] A\in M(n×n,\IR) [/mm] schiefsymmetrisch (d. h. es gilt [mm] A^T [/mm] = −A), und sei Rang(A) ungerade. Zeigen Sie, dass det(A) = 0 ist.

Ich habe mir überlegt:
Schiefsymetrisch bedeutet, dass für [mm] a_{ij}\in [/mm] A , [mm] i,j\in(1,2,3,...,n) a_{ij}=-a_{ji} [/mm] für [mm] i\not=j, [/mm] wenn gilt dass [mm] A^T=-A [/mm] dann muss die Hauptdiagonale nur 0en enthalten. Da 0 die einzige Zahl ist für die gilt +0=-0 und die Hauptdiagonale bei der Transposition erhalten bleibt.

Stimmt das soweit? Und wie gehe ich hier weiter vor? inwiefern hilft mir der ungerade Rang?

Ich habe diese Frage auf keinem andern Forum auf anderen Internetseiten gestellt.

        
Bezug
Schiefsymetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Sa 30.06.2007
Autor: Somebody


> Sei [mm]A\in M(n×n,\IR)[/mm] schiefsymmetrisch (d. h. es gilt [mm]A^T[/mm] =
> −A), und sei Rang(A) ungerade. Zeigen Sie, dass
> det(A) = 0 ist.
>  Ich habe mir überlegt:
>  Schiefsymetrisch bedeutet, dass für [mm]a_{ij}\in[/mm] A ,
> [mm]i,j\in(1,2,3,...,n) a_{ij}=-a_{ji}[/mm] für [mm]i\not=j,[/mm] wenn gilt
> dass [mm]A^T=-A[/mm] dann muss die Hauptdiagonale nur 0en enthalten.
> Da 0 die einzige Zahl ist für die gilt +0=-0 und die
> Hauptdiagonale bei der Transposition erhalten bleibt.
>  
> Stimmt das soweit?

Ich denke schon.

> Und wie gehe ich hier weiter vor?

Wie wärs mit folgendem: einerseits gilt (allgemein), dass
[mm]\det(A^T)=\det(A)[/mm]

andererseits ist aber auch (wegen der Antisymmetrie von [mm]A[/mm]):
[mm]\det(A^T)=\det(-A)[/mm]


> inwiefern hilft mir der ungerade Rang?

Das frage ich mich auch gerade. - Ahem, warte mal! ... vielleicht um zeigen zu können, dass gilt
[mm]\det(-A)=-\det(A)[/mm]


Damit haben wir alles beisammen: [mm]\det(A)=-\det(A)\Rightarrow \det(A)=0[/mm]
Nun musst Du es nur noch schön hinschreiben.

Bezug
                
Bezug
Schiefsymetrische Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Sa 30.06.2007
Autor: Zerwas

Okay ... vielen Dank :)

Eine Frage habe ich allerdings noch .... wie kann ich beweisen, dass det(-A)=-det(A) falls der Rang von A ungerade ist?

Gruß Zerwas

Bezug
                        
Bezug
Schiefsymetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Sa 30.06.2007
Autor: Somebody


> Okay ... vielen Dank :)
>
> Eine Frage habe ich allerdings noch .... wie kann ich
> beweisen, dass det(-A)=-det(A) falls der Rang von A
> ungerade ist?

[mm]-A[/mm] ist die Matrix [mm]A[/mm] mit einem Faktor [mm](-1)[/mm] auf jeden Spaltenvektor angewandt. Also kannst Du, wegen der Multilinearität der Determinantenfunktion, insgesamt [mm]n=\text{Rang}(A)[/mm]-mal einen Faktor [mm](-1)[/mm] vor die Determinante ziehen:
[mm]\det(-A)=(-1)^n\cdot \det(A)[/mm]

ist also [mm]n[/mm] ungerade, so folgt, wie gewünscht: [mm]\det(-A)=-\det(A)[/mm]

Bezug
                                
Bezug
Schiefsymetrische Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Sa 30.06.2007
Autor: Zerwas

Ahh okay ... klar ... vielen dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de