www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Schmidtsches Verfahren
Schmidtsches Verfahren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmidtsches Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 13.02.2011
Autor: Mandy_90

Aufgabe
Bestimmen Sie mithilfe des Schmidtschen Verfahrens Eine ONB des Untervektorraums des [mm] \IR^{5} U=span\{a=\vektor{1 \\ 0 \\ 0 \\ 0 \\ 0},b=\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},c=\vektor{1 \\ 1 \\ 1 \\ 0 \\ 2},d=\vektor{2 \\ 1 \\ 0 \\ 2 \\ 3}\}. [/mm]


Hallo,

ich hab eine Frage zu Vorgehensweise bei dieser Aufgabe. Also normalerweise hab ich eine schon gegebene Basis orthonormalisiert. Jetzt hab ich einen Unterraum und brauche erstmal eine Basis davon. Wenn ich gezeigt habe, dass a,b,c,d linear unabhängig sind, darf ich die doch ganz normal orthonormalisieren, da sie dann eine Basis des UR bilden ?

Wenn sie nicht linear unabhängig sind, dann kann ich doch eine Basis so bestimmen: Ich schreibe die vier vektoren als Matrix zusammen und bringe sie auf Stufenform. Die Nicht-Nullzeilen bilden dann eine Basis. Ich bin nur nicht sicher, ob ich [mm] \pmat{ a & b & c & d } [/mm] auf Stufenform bringen muss, oder [mm] \vektor{a^{T} \\ b^{T} \\ c^{T} \\ d^{T}}. [/mm] Ich denke eher das zweite, weil ich sonst in den Zeilen keine Vektoren des [mm] \IR^{5} [/mm] habe, ist das richtig so?

Vielen Dank
lg

        
Bezug
Schmidtsches Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 So 13.02.2011
Autor: wieschoo


> Bestimmen Sie mithilfe des Schmidtschen Verfahrens Eine ONB
> des Untervektorraums des [mm]\IR^{5} U=span\{a=\vektor{1 \\ 0 \\ 0 \\ 0 \\ 0},b=\vektor{1 \\ 0 \\ 1 \\ 0 \\ 0},c=\vektor{1 \\ 1 \\ 1 \\ 0 \\ 2},d=\vektor{2 \\ 1 \\ 0 \\ 2 \\ 3}\}.[/mm]
>  
> Hallo,
>  
> ich hab eine Frage zu Vorgehensweise bei dieser Aufgabe.
> Also normalerweise hab ich eine schon gegebene Basis
> orthonormalisiert. Jetzt hab ich einen Unterraum und
> brauche erstmal eine Basis davon. Wenn ich gezeigt habe,
> dass a,b,c,d linear unabhängig sind, darf ich die doch
> ganz normal orthonormalisieren, da sie dann eine Basis des
> UR bilden ?
>  
> Wenn sie nicht linear unabhängig sind, dann kann ich doch
> eine Basis so bestimmen: Ich schreibe die vier vektoren als
> Matrix zusammen und bringe sie auf Stufenform. Die
> Nicht-Nullzeilen bilden dann eine Basis. Ich bin nur nicht
> sicher, ob ich [mm]\pmat{ a & b & c & d }[/mm] auf Stufenform
> bringen muss, oder [mm]\vektor{a^{T} \\ b^{T} \\ c^{T} \\ d^{T}}.[/mm]
> Ich denke eher das zweite, weil ich sonst in den Zeilen
> keine Vektoren des [mm]\IR^{5}[/mm] habe, ist das richtig so?

Die gute Nachricht ist, das es egal ist - ob Zeile oder Spalte-. Da [mm]\operatorname{rg}(A)=\operatorname{rg}(A^T)[/mm]. Ja du musst erst zeigen, dass sie lin. unabh. sind.

>  
> Vielen Dank
>  lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de