Schnecken & Gummis < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:00 Mo 17.01.2005 | Autor: | Sakul |
Hi Leute,
ich habe eine sehr lustige und auf den zweiten Blick schwierige Aufgabe, für alle die entweder ginial sind oder gerne kniffeln.
Also wir haben eine Schnecke, die sich auf einem 1m langen Gummi (einer Gummischnur) in einer Zeiteinheit genau einen 1 cm nach forne bewegt. Gemeiner weise wird dass Gummi in der gleichen Zeiteinheit auch um einen Meter verlängert.
So die Frage ist natürlich, kommt die Schnecke an? Und wenn Ja dann wann?
Das die Schnecke ankommt weiß ich schon, aber mit welcher Formel ich das berechne weiß ich nicht.
Gruß Sakul
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Sakul,
Irgendwie verstehe ich deine Aufgabe nicht richtig. Wenn du sagst, dass der Gummi in einer Zeiteinheit um 1m verlängert wird, heißt das, dass es um einen Meter gedehnt wird, oder dass man 1m Gummi vorne "anklebt"???
Wirklich Sinn dürfte aber wohl nur das erste machen (Im anderen Fall wäre die Lösung trivialer Weise NEIN)
Nun zu Beginn überlegt man sich welche Strecke die Schnecke in einem Schritt zurück legt. Diese Strecke wäre einersteits 1cm, allerdings durch Dehnung um 1m, wandert die Schnecke (passiv) nochmal. Mit einer Gesammtlänge der Strecke von (n+1) Meterm nach n Zeitschritten erhällt man für die passive Streckung:[mm]\frac{s_{(n-1)}+1cm}{n}=\frac{s_n}{n+1}[/mm]
Insgesammt erhällt man also für die zurückgelegte Strecke der Schnecke die rekursive Vorschrift: [mm] $s_n=(s_{n-1}+0,01)\frac{n+1}{n}$ [/mm] (Alle Strecken in Metern)
Jetzt müsste nur noch geklärt werden, ab welchem n [mm] $s_n\ge [/mm] n+1$
Nimmt man jetzt mal eine kleine Wertetabelle:
[mm] s_0=0
[/mm]
[mm] s_1=0,02
[/mm]
[mm] s_2=0,045
[/mm]
[mm] s_3=0,073
[/mm]
[mm] s_4=1,0375
[/mm]
Man erkennt jetzt auch, dass die Funktionswerte immer schneller zunehmen.... Daher scheint deine Vermutung, dass die Schnecke irgendwann ihr Ziel erreicht bestätigt (aber hier nicht bewiesen!)
Wenn ich nicht so schlecht im programmieren wäre, würde ich jetzt ein kurzes Programm schreiben, das eine Reihe an Funktionswerten ausgibt.
Die Ausdauer da selbst loszurechnenen hab ich allerdings nicht. Und ne Idee für eine explizite Darstellung auch nicht (hab auch nicht viel Zeit im Moment) und schau mir die Aufgabe vielleicht später nochmal an.
Gruß Samuel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:27 Mo 17.01.2005 | Autor: | KaiAhnung |
Hallo Samuel.
Ich habe ganz ähnliche Überlegungen angestellt.
Für die zurückgelegte Strecke kam ich auf folgenden Term:
[mm]s(t)=(((\frac{1}{100}\cdot{}\frac{2}{1}+\frac{1}{100})\cdot{}\frac{3}{2}+\frac{1}{100})...)\cdot{}\frac{t+1}{t}[/mm]
[mm]=\frac{1}{100}\cdot{}\sum \limits_{i=1}^{t}{\prod \limits_{k=i}^{t}{\frac{k+1}{k}}}[/mm]
Betrachtet man den Term [mm]\prod \limits_{k=i}^{t}{\frac{k+1}{k}}[/mm], so sieht man, dass der Nenner eines Bruches immer dem Zähler des vorherigen Bruches aus dem Produkt entspricht. Daher lässt sich [mm]\prod \limits_{k=i}^{t}{\frac{k+1}{k}}[/mm] zu [mm]\frac{t+1}{i}[/mm] vereinfachen.
Somit erhält man
[mm]s(t)=\frac{1}{100}\cdot{}\sum \limits_{i=1}^{t}{\frac{t+1}{i}}[/mm]
[mm]=\frac{t+1}{100}\cdot{}\sum \limits_{i=1}^{t}{\frac{1}{i}}[/mm]
Für die Länge des Gummibandes gilt:
[mm]l(t)=t+1[/mm]
Also ist gefragt, für welches t die folgende Ungleichung gilt:
[mm]\frac{t+1}{100}\cdot{}\sum \limits_{i=1}^{t}{\frac{1}{i}} \ge t+1[/mm]
[mm]\frac{1}{100}\cdot{}\sum \limits_{i=1}^{t}{\frac{1}{i}} \ge 1[/mm]
[mm]\sum \limits_{i=1}^{t}{\frac{1}{i}} \ge 100[/mm]
Da links die Harmonische Reihe steht ist schonmal klar, dass es ein t gibt, für das die Ungleichung erfüllt ist. Das müsste nun nur noch jemand ausrechnen
Eine Näherung, die vielleicht schon ausreicht wäre die folgende
[mm]ln(t)+\gamma=100[/mm] (mit der Euler-Mascheroni Konstante [mm]\gamma[/mm]).
Wenn meine Überlegungen stimmen sollten, kommt dabei für t eine seeehr große Zahl heraus (mit 44 Dezimalstellen).
Vielleicht geht das auch viel einfacher, wer weiss.
MfG
Jan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:23 Di 18.01.2005 | Autor: | Peter_Pein |
Ich erhalte
t0=15 092 688 622 113 788 323 693 563 264 538 101 449 859 497 ZE,
also 44 Stellen
Gruß, Peter
P.S.: Wenn man das Problem kontinuierlich - also nicht in diskreten Zeiteinheiten betrachtet, erhält man [mm]t_{0}=e^{100}-1[/mm], was ein deutlich anderes Ergebnis bringt:
t0=26 881 171 418 161 354 484 126 255 515 800 135 873 611 117.77 s
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:35 Mo 17.01.2005 | Autor: | leduart |
Hallo, nette Frage, sieht im ersten Moment wie ein Grenzwert aus, führt auf eine Differentalgleichung. Lösung: t =( [mm] e^{100} [/mm] - 1)s also ca [mm] 10^{30}s [/mm] für die Zeit, das Gummi ist dann auch länger als unser Universum!!
Die Dgl: x = Weg der Schnecke, bzw ihre Entfernung vom Anfangspkt.
v = [mm] \bruch{dx}{dt} [/mm] = [mm] \bruch{1m/s}{1m+1m/s*t}*x [/mm] + 0.01m/s
daraus [mm] \bruch{x}{1+t} [/mm] = 0.01 ln(1+t)
Gruss und Danke für ne nette Puzzle- Runde
|
|
|
|
|
Hallo Leute,
es ist vielleicht ein bisschen verwirrend, wenn der Gummi immer länger wird. Gleichwertig ist doch das Problem, wenn die Schnecke allmählich langsamer wird.
Zunächst der schrittweise Fall:
Im ersten Zeitintervall bewegt sich die Schnecke mit [mm]v_0[/mm],
im zweiten mit [mm]\frac{1}{2}\cdot v_0[/mm],
im dritten mit [mm]\frac{1}{3}\cdot v0[/mm],
usw.
So ist die Schnecke 'relativ gesehen' genauso schnell wie vorher. Das Ziel ist in diesem Fall eben erreicht, wenn die Schnecke 100 cm geschafft hat, also für die kleinste Zahl n von Schritten, so dass
[mm]\sum_{k=1}^{n}\frac{1}{k}\ge100[/mm]
Der kontinuierliche Fall:
Hier wird einfach die Summe durch ein Integral ersetzt, um man sucht das kleinste t, so dass
[mm]\int_{0}{t}\frac{1}{x+1}dx\ge100[/mm].
Hier ist die Lösung dann t = [mm] e^{100} [/mm] - 1 Sekunden.
Hugo
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:32 Di 18.01.2005 | Autor: | leduart |
Zusatzfrage
Wie dick ist das Gummiband am Anfang,wenn es Am Ende noch 1 Atom dick ist und die atomabstande auch nur 1 Atomradius betragen?
|
|
|
|
|
Hallo leduart,
na wenn das Band [mm] e^{100}-1 [/mm] Zeiteinheiten gedehnt wird, dann ist es am Ende genau [mm] e^{100} [/mm] Meter lang.
Ich nehme an, dass Breite und Dicke gleichermaßen abnehmen. Dann ist die Dicke am Anfang [mm] e^{50} [/mm] mal so groß wie im gedehnten Zustand.
Das macht grob geschätzt am Anfang [mm] e^{50} [/mm] Atomdurchmesser, d.h.
[mm]d\approx e^{50}*10^{-10}m = 5,2\cdot10^{11} m[/mm]
Das ist ziemlich genau eine halbe Lichtstunde, d.h. fast so viel wie der Durchmesser der Marsbahn um die Sonne.
Hugo
|
|
|
|