www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Schnitt und Vereinigung
Schnitt und Vereinigung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt und Vereinigung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:45 Mo 01.11.2010
Autor: Highchiller

Aufgabe
Seien I und J nichtleere Mengen. Fur jedes i [mm] $\in$ [/mm] I sei [mm] $M_i$ [/mm] eine Menge und für jedes j [mm] $\in$ [/mm] J sei [mm] $M_j$ [/mm] eine Menge.
Beweisen Sie die folgende Aussage:
[mm] $\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad [/mm] = [mm] \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)$ [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://forum.mathepedia.de/index.php?topic=10.0

Das Problem liegt darin begraben, dass mir schon der Ansatz für die Hernagehensweise fehlt.
Ich freue mich über jede Hilfe die ich kriegen kann.
Liebe Grüße, André

        
Bezug
Schnitt und Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:23 Di 02.11.2010
Autor: angela.h.b.


> Seien I und J nichtleere Mengen. Fur jedes i [mm]\in[/mm] I sei [mm]M_i[/mm]
> eine Menge und für jedes j [mm]\in[/mm] J sei [mm]M_j[/mm] eine Menge.
>  Beweisen Sie die folgende Aussage:
>  [mm]\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad = \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

> Das Problem liegt darin begraben, dass mir schon der Ansatz
> für die Hernagehensweise fehlt.

Hallo,

[willkommenmr].

Wenn der "Ansatz" fehlt, kann das ganz verschiedene Ursachen haben, und es wäre gut, wenn Du mal sagen wurdest, wo das Problem ist.

Prinzipiell ist es so, daß wir rechts und links des Gleichheitszeichens je eine Menge haben, deren Gleichheit zu zeigen ist.
Lt. Definition für die Gleichheit von Mengen ist hierfür zu zeigen, daß jede Menge Teilmenge der anderen ist.

Zu zeigen ist also

a)
[mm]\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad \subseteq \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

b)
[mm]\quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)\subseteq\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm]


Wenn Du Dir die Teilmengendefinition anschaust, siehst Du, daß hierfür zu zeigen ist

a)
[mm]\quad x\in\left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad \Rightarrow \quad x\in\bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

b)
[mm]\quad x\in\bigcup_{(i,j)\in I x J} (M_i \cap M_j)\Rightarrow\quad x\in \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm]


Damit steht der Ansatz.

Nun kann ich mir vorstellen, daß das Problem eher woanders liegt: in den ganzen Zeichen.

Ich mache mir in solchen Fällen immer ein konkretes Beispiel.
Sei [mm] I:=\{1,2\} [/mm] und [mm] J:=\{a,b,c}. [/mm]

Was bedeutet es, wenn dasteht "für jedes [mm] i\in [/mm] I ist [mm] M_i [/mm] eine Menge"?
Es bedeutet: [mm] M_1 [/mm] und [mm] M_2 [/mm] sind Mengen.

Was bedeutet es, wenn dasteht "für jedes [mm] j\in [/mm] J ist [mm] M_j [/mm] eine Menge"?
Es bedeutet: ...

Was ist nun [mm] $\left(\bigcup_{i \in I} M_i\right)$? [/mm]
[mm] $\left(\bigcup_{i \in I} M_i\right)$=$\left(\bigcup_{i \in \{1,2\}} M_i\right)$= [/mm] ???

Entsprechend
[mm] \left(\bigcup_{j \in J} M_i\right)=... [/mm]

Was ist also
[mm] $\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm] $?

Nun zur rechten Seite.

Was ist [mm] I\times [/mm] J?  Das ist die Menge, die aus allen Paaren besteht, deren erster Eintrag aus I und deren zweiter Eintrag aus J ist.
Welche Paare sind das?
Damit kennst Du [mm] I\times [/mm] J.

Versuche nun mal die rechte Seite konkret hinzuschreiben. Wenn du nicht klarkommst, formuliere genau, an welcher Stelle Dein Problem liegt.

Gruß v. Angela











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de