Schnittgerade dreier Ebenen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sind drei Ebenen mit folgenden Gleichungen
E1: tx+y+z=-4
E2: 3x-ty+z= 2
E3: 7y-5z = -16
Bestimemn Sie den Parameter t so, dass sich diese drei Ebenen in einer gemeinsamen Gerade Schneiden. Geben sie die Gleichung dieser Geraden an! |
Hallo,
also Schnittgerade zweier Ebenen bestimmen ist kein Problem... auch weiß ich das normaler weiße nur zwei Ebenen zum berechnen benötigt werden... allerdings macht mir die zusätzliche Variable "t" ein strich durch die Rechnung...
kann mir jemand ein Denkansatz geben?
MfG
Igor
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 Fr 12.07.2013 | Autor: | Sax |
Hi,
du müsstest t so bestimmen, dass die Koeffizientenmatrix den Rang 2 hat.
Das wird dir bei den angegebenen Werten aber nicht gelingen.
Überprüfe die Aufgabenstellung auf Schreibfehler.
Gruß Sax.
|
|
|
|
|
also wie schon richtig erkannt habe ich mich verschrieben
richtig ist:
gleich als matrix aufgestellt
[mm] \pmat{ t & 1 & -1 \\ 3 & -t & 1 \\ 0 & 7 & -5 }
[/mm]
wenn ich t jetzt so bestimme das zwei Zeilen oder Spalten linear abhängig sind ist der Rang doch aber gleich 1 oder?
|
|
|
|
|
Hallo Igor_Igorson,
> also wie schon richtig erkannt habe ich mich verschrieben
> richtig ist:
> gleich als matrix aufgestellt
>
> [mm]\pmat{ t & 1 & -1 \\ 3 & -t & 1 \\ 0 & 7 & -5 }[/mm]
>
> wenn ich t jetzt so bestimme das zwei Zeilen oder Spalten
> linear abhängig sind ist der Rang doch aber gleich 1 oder?
Das ist richtig.
Hier musst Du das t so bestimmen, dass sich
eine Spalte bzw. eine Zeile als Linearkombination
der beiden anderen Spalten bzw. Zeilen darstellen lässt.
Gruss
MathePower
|
|
|
|
|
ich bin mir nicht ganz sicher wie ich das bewerkstelligen soll...
erst habe ich versucht zu "sehen" ob es mögliche Kombinationen gibt... ohne Erfolg
dann habe ich ein Gleichungssystem aufgestellt und versucht die unterste Zeile durch kombination der anderen beiden zu errechnen... ohne Erfolg... da ist mir dann auch aufgefallen das das nicht sinn der sache sein kann... denn wenn ich das für jede spalte und jede Zeile mache sitz ich da morgen noch dran... Aber auch eine Recherche nach möglichen Lösungsverfahren hatte keinen Erfolg...
Gibt es dafür denn ein Lösungsverfahren oder stell ich mich einfach nur zu doof an
Mit freundlichen Grüßen
Igor
|
|
|
|
|
Hallo,
> dann habe ich ein Gleichungssystem aufgestellt und
> versucht die unterste Zeile durch kombination der anderen
> beiden zu errechnen... ohne Erfolg...
Was bedeutet ohne Erfolg? Das müsste so schon funktionieren, diese Aufgaben kennt man ja zur Genüge: einen Parameter so bestimmen, dass die Lösungsmenge eines LGS eine bestimmte Struktur hat.
Die gute Nachricht: ich weiß noch eine schnellere Methode.
> da ist mir dann auch
> aufgefallen das das nicht sinn der sache sein kann... denn
> wenn ich das für jede spalte und jede Zeile mache sitz ich
> da morgen noch dran... Aber auch eine Recherche nach
> möglichen Lösungsverfahren hatte keinen Erfolg...
> Gibt es dafür denn ein Lösungsverfahren oder stell ich
> mich einfach nur zu doof an
Du möchtest hier ja nichts anderes tun, als Werte für t zu finden, so dass die Spalten der Matrix linear abhängig sind. Bestimme dazu die Determinate und setze sie gleich Null.
Gruß, Diophant
|
|
|
|
|
dann sollte sofern ich mich hoffentlich nicht verrechnet habe folgende Gerade die Schnittkante sein
Schnittgerade : [mm] \vektor{0 \\ 2 \\ 6} [/mm] + [mm] s*\vektor{1 \\ 5 \\ 7}
[/mm]
für t hatte ich zwei werte bekommen t=2 und t= -0,6
weitergerechnet habe ich mit t=2
|
|
|
|
|
Hallo Igor_Igorson,
> dann sollte sofern ich mich hoffentlich nicht verrechnet
> habe folgende Gerade die Schnittkante sein
>
> Schnittgerade : [mm]\vektor{0 \\ 2 \\ 6}[/mm] + [mm]s*\vektor{1 \\ 5 \\ 7}[/mm]
>
Nein, Du hast dich nicht verrechnet.
>
> für t hatte ich zwei werte bekommen t=2 und t= -0,6
> weitergerechnet habe ich mit t=2
>
Gruss
MathePower
|
|
|
|