www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Schnittgerade von E mit Projek
Schnittgerade von E mit Projek < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade von E mit Projek: Tipps
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 14.09.2012
Autor: Bob1505

Aufgabe
Es sei E eine durch A = (4; 1; 2), B = (2; 3; 4), C = (5; 4; 1) gegebene Ebene.
Bestimmen Sie in einer Grund- und Aufriss-Zeichnung die Schnittgerade von E mit
den Projektionsebenen.

Ich weiß wie ich die Ebene in beide Projektionsebenen einzeichne. Aber wie bestimme ich nun die Schnittgeraden mit diesen Ebenen? Was mir bekannt ist, ist dass ich die Geraden AB und BC weiterführen muss und dann auf die Schnittpunkte mit der y-Achse achten soll. Aber weiter??

Danke für die Hilfe schonmal.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittgerade von E mit Projek: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Di 18.09.2012
Autor: M.Rex

Hallo.

Sollst du das ganze zeichnerisch oder rechnerisch lösen?

Die Ebene [mm] E_{ABC} [/mm] kannst du als

[mm] E:_{ABC}:\vec{x}=\vec{a}+\lambda\cdot\overrightarrow{AB}+\mu\cdot\overrightarrow{AC} [/mm] darstellen.

Die [mm] $x_{1}-x_{2}$-Ebene [/mm] kannst du mit folgender Koordinatenform darstellen:
[mm] x_{3}=0 [/mm]

Wenn du die Ebene E in die Koordinatenebene einsetzt, bekommst du eine Beziehung zwischen [mm] \lambda [/mm] und [mm] \mu, [/mm] wenn du diese dann in die Ebene E einsetzt, und noch weitestgehend zusammenfasst, bekommst du daraus dann die Schnittgerade zwischen den Ebenen.

Eine hervorragende Zusammenfassung der analytischen Geometrie findest du bei []poenitz-net.de.

Marius

Bezug
        
Bezug
Schnittgerade von E mit Projek: Anleitung
Status: (Antwort) fertig Status 
Datum: 11:07 Di 18.09.2012
Autor: Al-Chwarizmi


> Es sei E eine durch A = (4; 1; 2), B = (2; 3; 4), C = (5;  4; 1)
> gegebene Ebene.
>  Bestimmen Sie in einer Grund- und Aufriss-Zeichnung die
> Schnittgerade von E mit
>  den Projektionsebenen.
>  Ich weiß wie ich die Ebene in beide Projektionsebenen
> einzeichne. Aber wie bestimme ich nun die Schnittgeraden
> mit diesen Ebenen? Was mir bekannt ist, ist dass ich die
> Geraden AB und BC weiterführen muss und dann auf die
> Schnittpunkte mit der y-Achse achten soll. Aber weiter??


Hallo Bob,

        [willkommenmr]

dies ist ganz offensichtlich eine Aufgabe der "darstellenden
Geometrie", die konstruktiv gelöst werden soll.
Nun kommt es noch darauf an, wie die Projektionen
dargestellt werden. Ich nehme einmal an, dass die übliche
"Zweitafelprojektion" gemeint ist.

Zeichne und bezeichne die Seitengeraden a,b,c (übliche
Bezeichnungsweise) in Grund- und Aufriss.
Um die Schnittgerade von E mit der Grundrissebene [mm] \Pi_1 [/mm] zu
erhalten, brauchst du zwei ihrer Punkte, etwa die ersten
Spurpunkte von a und c. Die findest du zuerst im Aufriss,
wenn du schaust, wo a" und c" die (horizontale) y-Achse
schneiden. Nenne diese Punkte z.B. U" und V". Übertrage
diese Punkte auch in den Grundriss, natürlich U' auf a'
und V' auf c'. Die Gerade s durch U(=U') und V(=V') ist
dann die Schnittgerade von E mit [mm] \Pi_1, [/mm] also die erste
Spurgerade von E.

Dann gehst du analog (aber mit vertauschten Rollen
von Grund- und Aufriss) vor, um die zweite Spurge-
rade zu bestimmen. Es ergibt sich dann eine zeichne-
rische Kontrollmöglichkeit: die erste und die zweite
Spurgerade müssen sich auf der Rissachse (y-Achse)
kreuzen.

LG    Al-Chwarizmi  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de