www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Schnittgerade von zwei Ebenen
Schnittgerade von zwei Ebenen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade von zwei Ebenen: Ansatz fehlt
Status: (Frage) beantwortet Status 
Datum: 18:10 Mo 22.01.2007
Autor: magic1980

Aufgabe
[mm] E_{1}=\vektor{1 \\ 1\\ 0} *\left(x-\vektor{0 \\ 0\\ 2}\right) [/mm]
[mm] E_{2}=\vektor{0 \\ 1\\ 1} [/mm] * [mm] \left(x-\vektor{0 \\ -1\\ 0}\right) [/mm]

Welche Schnittgerade g haben [mm] E_{1} [/mm] und [mm] E_{2}? [/mm]

Hallo,

ich stehe hier vor einem großen Problem. Ich weiss zwar ungefähr, wie man die Schnittgerade zweier Ebenen in der r,s-Form bestimmt, aber nicht in der Hesseschen-Normalform. Könnte mir da vielleicht jemand einen Ansatz geben, was ich zu tun habe?
Danke.

Gruß
Volker

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt


        
Bezug
Schnittgerade von zwei Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Mo 22.01.2007
Autor: magic1980

Ich habe diese Frage in keinem anderen Forum gestellt. Hab mich beim Copy & Paste etwas vertan. Sorry.

Bezug
        
Bezug
Schnittgerade von zwei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mo 22.01.2007
Autor: Bastiane

Hallo magic1980!

Ich würd's einfach in die Form umwandeln, mit der du das kannst. :-) Kann sein, dass es auch anders geht, aber da mir ein funktionsfähiger Weg immer gereicht hat, kenne ich keinen anderen. ;-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Schnittgerade von zwei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Di 23.01.2007
Autor: angela.h.b.


> [mm]E_{1}=\vektor{1 \\ 1\\ 0} *\left(x-\vektor{0 \\ 0\\ 2}\right)[/mm]
>  
> [mm]E_{2}=\vektor{0 \\ 1\\ 1}[/mm] * [mm]\left(x-\vektor{0 \\ -1\\ 0}\right)[/mm]
>  
> Welche Schnittgerade g haben [mm]E_{1}[/mm] und [mm]E_{2}?[/mm]
>  Hallo,
>  
> ich stehe hier vor einem großen Problem. Ich weiss zwar
> ungefähr, wie man die Schnittgerade zweier Ebenen in der
> r,s-Form bestimmt, aber nicht in der Hesseschen-Normalform.
> Könnte mir da vielleicht jemand einen Ansatz geben, was ich
> zu tun habe?

Hallo,

so weit ich weiß, kann man das nicht machen, ohne zumindest eine Normalform umzuwandeln.

Was Du "direkt" bekommen kannst, ist der Richtungsvektor der Schnittgerade: das Kreuzprodukt der beiden Normalenvektoren. Dann fehlt Dir aber immer noch der gemeinsame Punkt.

Ich würde entweder eine der Ebenen in Parameterform umwandeln und in die andere einsetzen, oder das zugehörige lineare Gleichungssystem lösen:

[mm] 0=\vektor{1 \\ 1\\ 0} *(\vec{x}-\vektor{0 \\ 0\\ 2}) [/mm] und
[mm] 0=\vektor{0 \\ 1\\ 1} *(\vec{x}-\vektor{0 \\ -1\\ 0} [/mm]

ist gleichwertig mit

0=x+y  und
0=y+z-1


Gruß v. Angela

Bezug
                
Bezug
Schnittgerade von zwei Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Di 23.01.2007
Autor: magic1980

Also wir sollen das nicht umwandeln, sondern in der Form belassen.
Mein Prof meinte nur, dass wir zwei Gleichung mit drei unbekannten lösen sollen. So wie das auch Angela vorgeschlagen hat.
Aber wie sieht so eine Gleichung denn aus?
Hab da voll die Denkblockade.

Bezug
                        
Bezug
Schnittgerade von zwei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Di 23.01.2007
Autor: Zwerglein

Hi, magic,

> Also wir sollen das nicht umwandeln, sondern in der Form
> belassen.
>  Mein Prof meinte nur, dass wir zwei Gleichung mit drei
> unbekannten lösen sollen. So wie das auch Angela
> vorgeschlagen hat.

Angela hat in der zweiten Ebenengleichung einen Vorzeichenfehler.
Richtig wäre:

(I) x + y = 0
(II)  y + z + 1 = 0

Das Gleichungssystem ist UNTERbestimmt:
2 Gleichungen, aber 3 Unbekannte.
Also hast Du einen Freiheitsgrad, kannst z.B.
y = [mm] \lambda [/mm]
setzen.
Dann kriegst Du mit (I) x = [mm] -\lambda [/mm]
und mit (II) z = -1 - [mm] \lambda [/mm]

Das schreibe nun in vektorieller Form und wandle es zur üblichen Geradengleichung um:

[mm] \vektor{x \\ y \\ z} [/mm] = [mm] \vektor{-\lambda \\ \lambda \\ -1 - \lambda} [/mm]

oder:

[mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 0 \\ -1} [/mm] + [mm] \lambda*\vektor{-1 \\ 1 \\ -1} [/mm]

Fertig!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de