www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Schnittgeraden bestimmen
Schnittgeraden bestimmen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgeraden bestimmen: Zwei Ebenen gegeben
Status: (Frage) beantwortet Status 
Datum: 12:30 So 05.06.2005
Autor: drzero

Hallo Matheräumer,

Ich grübele an folgender Aufgabe, vielleicht mag jemand meine Lösung prüfen:

Bestimmen Sie eine Parametergleichung der Schnittgeraden der Ebenen E und F:
E: x-y+z=6
F: x+y-4z=-2

1.) Ich hab ein Gleichungsystem daraus gemacht, indem ich erstmal x=0 gesetzt habe:

y + z  =  6
y - 4z = -2

Da bekomme ich dann
y= 4,4 und z=1,6 raus, also meinen ersten Punkt auf der Schnittgeraden: (0 / 4,4 / 1,6)

2.) Dann z = 0 gesetzt
x - z  =  6
x + y = -2

Da bekomme ich dann
x= 2 und y= -4 raus, also meinen zweiten Punkt auf der Schnittgeraden: (2 / -4 / 0)

Diese beiden Punkte drücke ich dann so aus:

g: (x / y / z)=(0 / 4,4 / 1,6) + t(2 / -8,4 / -1,6)

Ist das eine mögliche richtige Lösung?
Oder bin ich "mathe-eintagsfliege" mal wieder total auf dem holzigen weg?

Vielen Dank für die Hilfe, mfg, drzero

P.S.: Ich bin immer wieder beeindruckt von dem Wissen, welches ihr hier anhäuft ;-)
Und gefragt habe ich dies noch garnicht irgendwo, auch nicht woanders...


        
Bezug
Schnittgeraden bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 So 05.06.2005
Autor: raimund

deine lösung:

g:x= [mm] \vektor{0 \\ 4,4 \\ 1,6} [/mm] + t [mm] \vektor{2 \\ -8,4 \\ -1,6} [/mm]

kannst du leicht prüfen in dem du zeigst:

g [mm] \in [/mm] E und [mm] g\in [/mm] F.

für t=3 erhälst du den Punkt   P (6 \ -20,8 \ -3,2).
P ist zwar Teil von F aber nicht von E, d.h. g ist nicht die schnittgerade da alle punkte von g auch punkte von E und F sein müssen.

dein fehler liegt im lösungsweg beim nullsetzen von x und z.
um das LGS zu lösen musst du die gleichungen miteinander "in verbindung" setzen:

E   x-y+z=6
F   x+y-4z=-2

E      x- y+ z=6
F-E     2y-5z=-8

da du 2 gleichungen aber 3 unbekannte hast musst du eine unbekannte durch einen parameter ersetzen. hier: z= [mm] \lambda [/mm]

x und y lassen sich also jetzt in abhängigkeit von [mm] \lambda [/mm] bestimmen.
du solltest damit mal weiterkommen...

Bezug
        
Bezug
Schnittgeraden bestimmen: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 So 05.06.2005
Autor: Zwerglein

Hi, Dr Zero,

> Bestimmen Sie eine Parametergleichung der Schnittgeraden
> der Ebenen E und F:
>  E: x-y+z=6
>  F: x+y-4z=-2
>  
> 1.) Ich hab ein Gleichungsystem daraus gemacht, indem ich
> erstmal x=0 gesetzt habe:
>  
> y + z  =  6

Vorzeichenfehler! Richtig wäre -y + z = 6

>  y - 4z = -2
>  
> Da bekomme ich dann
>  y= 4,4 und z=1,6 raus, also meinen ersten Punkt auf der
> Schnittgeraden: (0 / 4,4 / 1,6)

Der erste Punkt wäre demnach (0 / [mm] -\bruch{22}{3} [/mm] / [mm] --\bruch{4}{3}) [/mm]
(Ohne Garantie auf Rechenfehler!)

>  
> 2.) Dann z = 0 gesetzt
>  x - z  =  6

Schreibfehler! Du meinst: x - y = 6

>  x + y = -2
>  
> Da bekomme ich dann
>  x= 2 und y= -4 raus, also meinen zweiten Punkt auf der
> Schnittgeraden: (2 / -4 / 0)

Der Punkt ist OK!

> Diese beiden Punkte drücke ich dann so aus:
>  
> g: (x / y / z)=(0 / 4,4 / 1,6) + t(2 / -8,4 / -1,6)
>  
> Ist das eine mögliche richtige Lösung?

Wie gesagt: Bis auf den Vorzeichenfehler von oben ist Dein Lösungsweg OK! Das von Dir benutzte Verfahren berechnet praktisch die Spurpunkte der Schnittgeraden in den Basisebenen, in Deinem Fall für x=0 in der yz-Ebene und für z=0 in der xy-Ebene. Wenn's da mal einen Widerspruch geben sollte, heißt das: Die Schnittgerade liegt parallel zu dieser Basisebene; dann wählst Du halt y=0.

>  Oder bin ich "mathe-eintagsfliege" mal wieder total auf
> dem holzigen weg?

Nein, nein! Aber schau' Dir mal in aller Ruhe den Vorschlag von Raimund an und entscheide (für Dich!), ob Du in Zukunft lieber so vorgehen möchtest! Beide Wege sind vom Rechenaufwand etwa gleichwertig.

Es gibt noch (mindestens) eine weitere Alternative, sozusagen eine Variante Deines Lösungsvorschlages:
Du rechnest nur EINEN Punkt mit Deiner Methode aus, z.B. für x=0; den nimmst Du als Aufpunkt der Geraden.
Den Richtungsvektor aber berechnest Du nicht mit Hilfe eines zweiten Punktes, sondern direkt als Kreuzprodukt der Normalenvektoren der beiden Ebenen:
[mm] \vektor{1 \\ -1 \\ 1} \times \vektor{1 \\ 1 \\ -4} [/mm] = [mm] \vektor{3 \\ 5 \\ 2} [/mm]




Bezug
                
Bezug
Schnittgeraden bestimmen: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 So 05.06.2005
Autor: drzero

Super!
Da habt ihr beiden mir ordentlich weitergeholfen ;-)

Vielen Dank, ich bin garnicht darauf gekommen, dass das Kreuzprod. ja auch noch geht...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de