www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Schnittkurve
Schnittkurve < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Sa 26.01.2013
Autor: Fabian

Aufgabe
Gegeben seien die beiden räumlichen Flächen [mm] F_1 [/mm] und [mm] F_2 [/mm] durch

[mm]F_{1}:=\left \{(x,y,z):x^2+y^2+z^2=5 \right \}[/mm], [mm]F_{1}:=\left \{(x,y,z): z=1/2*x^2+1/2*y^2-1 \right \}[/mm]

Mit C wird die Schnittkurve dieser beiden Flächen bezeichnet.

Bestimmen Sie eine Parameterdarstellung der Schnittkurve C.


Hallo alle zusammen,

ich steh bei dieser Aufgabe leider auf dem Schlauch! In den Lösungshinweisen steht, dass ich eine Projektion der Schnittkurve in die xy-Ebene machen soll: [mm]x^2+y^2=4[/mm]

Die Kurve C soll dann sein: [mm]C: \overrightarrow{x}(t)=\vektor{2cos(t) \\ 2sin(t) \\ 1}[/mm]


Ich brauch bei der Aufgabe mal einen kleinen Hinweis, wie ich vorgehen und warum ich die Schnittkurve in die xy-Ebene projezieren muss.

Vielen Dank!

Gruß Fabian

        
Bezug
Schnittkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Sa 26.01.2013
Autor: Richie1401

Hallo Fabian,


> [mm]F_{1}:=\left \{(x,y,z):x^2+y^2+z^2=5 \right \}[/mm],
> [mm]F_{2}:=\left \{(x,y,z): z=1/2*x^2+1/2*y^2-1 \right \}[/mm]

Wir multiplizieren [mm] z=1/2x^2+1/2y^2-1 [/mm] mit dem Faktor 2 und addieren dann 2 und erhalten

[mm] 2z+2=x^2+y^2 [/mm]    (*)

Wir setzen (*) in [mm] F_1 [/mm] ein:
[mm] 2z+2+z^2=5, [/mm] also erhalten wir [mm] 0=z^2+2z-3 [/mm]   (**)

Was sind die Lösungen von (**)?
Setze die Lösungen dann in (*) ein. Sind beide Lösungen überhaupt möglich? Oder muss man eine Lösung streichen, weil sie unmöglich ist?

Beachte weiterhin: [mm] x^2+y^2=r^2 [/mm] beschreibt einen Kreis vom Radius r.

Beste Grüße!

Bezug
                
Bezug
Schnittkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Mi 30.01.2013
Autor: Fabian

Hallo Richie,

hab ganz vergessen mich zu bedanken. Also vielen Dank für die Antwort. Super Erklärung!

Viele Grüße

Fabian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de