Schnittmenge und Addition UVR < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | U = [mm] \left\langle u1,u2,u3 \right\rangle
[/mm]
V = [mm] \left\langle v1,v2,v3 \right\rangle
[/mm]
mit
u1 = (1,1,1,0,1)
u2 = (2,1,0,0,1)
u3 = (0,0,1,0,0)
v1 = (1,1,0,0,1)
v2 = (3,2,0,0,2)
v3 = (0,1,1,1,1)
Bestimme Sie Basen von U [mm] \cap [/mm] V und U+V |
Hallo :)
Bräuchte mal einen prüfenden Blick und einen Lösungshinweis zum lösen von U+V, aber erst mal zu U [mm] \cap [/mm] V :
Dazu löse ich zuerst die Gleichung
[mm] \vektor{0 \\ 0 \\ 0 \\ 0 \\ 0} [/mm] = [mm] \lambda_{1}*u1+\lambda_{2}*u2+\lambda_{3}*u3-\lambda_{4}*v1-\lambda_{5}*v2-\lambda_{6}*v3
[/mm]
Zugehörige homogene Gleichungssystem:
Kern ( [mm] \pmat{ 1 & 2 & 0 & -1 & -3 & 0 \\ 1 & 1 & 0 & -1 & -2 & -1 \\ 1 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & -1 & -2 & -1 } [/mm] )
überführe ich mit Hilfe von Gauß zu:
[mm] \pmat{ 1 & 2 & 0 & -1 & -3 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 }
[/mm]
Daraus ergibt sich:
[mm] x_{4}, x_{5} [/mm] frei wählbar
[mm] x_{6} [/mm] = [mm] x_{3} [/mm] = 0
[mm] x_{2} [/mm] = [mm] x_{5}
[/mm]
[mm] x_{1} [/mm] = [mm] -2x_{2} [/mm] + [mm] x_{4} [/mm] + [mm] 3x_{5} \gdw x_{1} [/mm] = [mm] x_{4} [/mm] + [mm] x_{5}
[/mm]
Also, Kern(A) = { [mm] \vektor{x_{4}+x_{5} \\ x_{5} \\ 0 \\ x_{4} \\ x_{5} \\ 0} [/mm] | [mm] x_{4},x_{5} \in \IR [/mm] }
Nun betrachte ich nur die rechte Seite der folgenden Gleichung
[mm] \lambda_{1}*u1+\lambda_{2}*u2+\lambda_{3}*u3 [/mm] = [mm] \lambda_{4}*v1+\lambda_{5}*v2+\lambda_{6}*v3
[/mm]
(ab jetzt bin ich mir unsicher)
[mm] \Rightarrow [/mm] Span{ [mm] \lambda_{4} [/mm] * [mm] \vektor{ 1 \\ 1 \\ 0 \\ 0 \\ 1} [/mm] + [mm] \lambda_{5} [/mm] * [mm] \vektor{ 3 \\ 2 \\ 0 \\ 0 \\ 2} [/mm] }
Dass die Teile lin. unabh. sind, sieht man relativ schnell. Also auch eine Basis von U [mm] \cap [/mm] V
Was muss ich tun um die Basis von U+V zu berechnen? Müsste das nicht fast das gleiche sein wie U [mm] \cap [/mm] V? Besten Dank schon einmal für die Mühen!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:05 Do 04.09.2014 | Autor: | Marcel |
Hallo,
> U = [mm]\left\langle u1,u2,u3 \right\rangle[/mm]
> V = [mm]\left\langle v1,v2,v3 \right\rangle[/mm]
>
> mit
>
> u1 = (1,1,1,0,1)
> u2 = (2,1,0,0,1)
> u3 = (0,0,1,0,0)
> v1 = (1,1,0,0,1)
> v2 = (3,2,0,0,2)
> v3 = (0,1,1,1,1)
aus "Faulheitsgründen meinerseits" gehe ich mal nur auf die folgende
Frage ein:
> Was muss ich tun um die Basis von U+V zu berechnen? Müsste
> das nicht fast das gleiche sein wie U [mm]\cap[/mm] V?
Wie kommst Du auf die letzte Frage? [mm] $U\,+V\,$ [/mm] ist doch wesentlich größer
als $U [mm] \cap V\,,$ [/mm] alleine schon wegen
[mm] $\dim(U+V)=\dim(U)+\dim(V)-\dim(U \cap V)\,.$
[/mm]
Ein einfaches Beispiel: Betrachte
[mm] $U_1:=\{r*(1,0,0,):\;\; r \in \IR\}$
[/mm]
und
[mm] $U_2:=\{s*(0,1,0):\;\; s \in \IR\}\,.$
[/mm]
Was ist [mm] $U_1+U_2$ [/mm] für ein Unterraum des [mm] $\IR^2$ [/mm] (grobgesagt ist das
[mm] $\text{span}\{(1,0,0),\;(0,1,0)\}\,,$
[/mm]
Du kannst das aber sicher auch sehr schön mit Worten beschreiben, wenn
wir im [mm] $\IR^3$ [/mm] von sowas wie [mm] *$x\,$-, $y\,$- [/mm] und [mm] $z\,$-Achsen* [/mm] reden).
(Nebenbei: Du siehst hier auch, dass ich keine skalaren Vielfachen vor die
Vektoren schreibe und auch kein Pluszeichen - Du hättest es oben so
geschrieben:
[mm] $\text{span}\{r*(1,0,0) + s*(0,1,0)\}\,,$
[/mm]
was man nicht tun sollte - zumal sich das [mm] $r\,$ [/mm] und das [mm] $s\,$ [/mm] da ziemlich identitätslos
vorkommen, sie wissen gar nicht, woher sie kommen...
Vielleicht warst Du in Gedanken bei sowas wie dieser Gleichheit (also in
analogem Sinne):
[mm] $\text{span}\{(1,0,0),\;(0,1,0)\}=\{r*(1,0,0)+s*(0,1,0):\;\;r,s \in \IR\}$?).
[/mm]
Was ist [mm] $U_1 \cap U_2$?
[/mm]
Um aber zurück zu Deiner Frage zu kommen:
Du weißt doch, dass
[mm] $U+V=\text{span}\{u_1,u_2,u_3,v_1,v_2,v_3\}$
[/mm]
gilt. Damit kennst Du ein Erzeugendensystem von [mm] $U+V\,.$ [/mm] Du brauchst nun ein
minimales...
Und, was Du auch machen könntest: Ich schreibe jetzt mal Elemente des
[mm] $\IR^5$ [/mm] als Spaltenvektoren. Dann überlege Dir, was Dir die Matrix
[mm] $A:=({u_1}^T,{u_2}^T,{u_3}^T,{v_1}^T,{v_2}^T,{v_3}^T)=\pmat{1&2&0&1&3&0\\1&1&0&1&2&1\\1&0&1&0&0&1\\0&0&0&0&0&1\\1&1&0&1&2&1}$
[/mm]
der Abbildung
[mm] $f_A \colon \IR^6 \to \IR^5$ [/mm] mit [mm] $f_A(x)=f_A(\;(x_1,x_2,x_3,x_4,x_5,x_6)^T\;)=:f_A(x_1,x_2,x_3,x_4,x_5,x_6):=A*x=A*\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6}$
[/mm]
hier bringt (sofern das Wissen bereits vorhanden ist). Wenn das
entsprechende Wissen schon vorhanden ist, so weißt Du, dass die
Dimension des Bildes von [mm] $f_A$ [/mm] natürlich [mm] $\le [/mm] 5$ sein muss, und Du
siehst (wegen [mm] $\text{Rang}A=\text{Rang}A^T$) [/mm] zudem, dass die
letzte Zeile (welche mit der 2en identisch ist) keinen Einfluß hat.
(Was bedeutet das wiederum für das Bild von [mm] $f_A$? [/mm] Die Dimension
ist also nicht nur [mm] $\le 5\,,$ [/mm] sondern sogar ersichtlich [mm] $\le$ $\ldots$?)
[/mm]
Aber das wird man beim Gaußalgorithmus auch am Ergebnis sehen...
P.S. Hilfreich ist hierbei auch das Buch
Bosch, lineare Algebra (ich habe wohl noch die erste Auflage von 2001),
insbesondere der Beweis zu Satz 5 auf Seite 46. Oder Du überlegst Dir mal
selbst, wie man von $U+U'$ eine Basis basteln kann, wenn man eine Basis von
[mm] $U\,$ [/mm] und eine von $U'$ kennt (schau' mal, ob wir oben nicht Basen von [mm] $U\,$ [/mm] bzw.
von [mm] $V\,$ [/mm] kennen).
Übrigens, was ich oben auch mal schnell benutzt habe, und was Du in
Bosch, nach 1.6 Definition 1 auf Seite 43, nachlesen kannst:
Es ist
[mm] $U+V=\text{span}(U \cup V)\,.$
[/mm]
Daher gilt:
Ist [mm] $U=\text{span}M_1$ [/mm] und [mm] $V=\text{span}M_2$ [/mm] für Mengen [mm] $M_1,M_2 \subseteq V\,,$ [/mm] so folgt
[mm] $U+V=\text{span}(M_1 \cup M_2)\,.$
[/mm]
Bei dieser Aussage ist [mm] "$\subseteq$" [/mm] (ziemlich) trivial:
Ist [mm] $x=u+v\,$ [/mm] mit $u [mm] \in [/mm] U$ und $v [mm] \in V\,,$ [/mm] so gilt, weil [mm] $u\,$ [/mm] als Linearkombination
der Elemente aus [mm] $M_1$ [/mm] und [mm] $v\,$ [/mm] als Linearkombination der Elemente aus
[mm] $M_2$ [/mm] geschrieben werden kann...
Der Aussagenteil [mm] "$\supseteq$" [/mm] ist auch nicht besonders viel schwerer zu beweisen
(bzw. er folgt eigentlich ziemlich schnell mit [mm] $U+V=\text{span}(U \cup [/mm] V)$).
Gruß,
Marcel
|
|
|
|
|
Vielen lieben Dank, dein Beitrag hat mir geholfen! Schönen Tag noch :)
|
|
|
|
|
> U = [mm]\left\langle u1,u2,u3 \right\rangle[/mm]
> V = [mm]\left\langle v1,v2,v3 \right\rangle[/mm]
>
> mit
>
> u1 = (1,1,1,0,1)
> u2 = (2,1,0,0,1)
> u3 = (0,0,1,0,0)
> v1 = (1,1,0,0,1)
> v2 = (3,2,0,0,2)
> v3 = (0,1,1,1,1)
>
> Bestimme Sie Basen von U [mm]\cap[/mm] V und U+V
> Hallo :)
> Bräuchte mal einen prüfenden Blick und einen
> Lösungshinweis zum lösen von U+V, aber erst mal zu U [mm]\cap[/mm]
> V :
Hallo,
.
>
> Dazu löse ich zuerst die Gleichung
>
> [mm]\vektor{0 \\ 0 \\ 0 \\ 0 \\ 0}[/mm] =
> [mm]\lambda_{1}*u1+\lambda_{2}*u2+\lambda_{3}*u3-\lambda_{4}*v1-\lambda_{5}*v2-\lambda_{6}*v3[/mm]
Ja.
Das tust Du, weil Du wissen möchtest, wie die Vektoren v aussehen, die sowohl in U als auch in V sind, die man also als Linearkombination der [mm] u_i [/mm] und als Linearkombination der [mm] v_i [/mm] schreiben kann.
>
> Zugehörige homogene Gleichungssystem:
>
> Kern ( [mm]\pmat{ 1 & 2 & 0 & -1 & -3 & 0 \\ 1 & 1 & 0 & -1 & -2 & -1 \\ 1 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & -1 & -2 & -1 }[/mm]
> )
>
> überführe ich mit Hilfe von Gauß zu:
>
> [mm]\pmat{ 1 & 2 & 0 & -1 & -3 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 }[/mm]
>
> Daraus ergibt sich:
>
> [mm]x_{4}, x_{5}[/mm] frei wählbar
> [mm]x_{6}[/mm] = [mm]x_{3}[/mm] = 0
> [mm]x_{2}[/mm] = [mm]x_{5}[/mm]
> [mm]x_{1}[/mm] = [mm]-2x_{2}[/mm] + [mm]x_{4}[/mm] + [mm]3x_{5} \gdw x_{1}[/mm] = [mm]x_{4}[/mm] +
> [mm]x_{5}[/mm]
>
> Also, Kern(A) = [mm] \{ \vektor{x_{4}+x_{5} \\ x_{5} \\ 0 \\ x_{4} \\ x_{5} \\ 0} | x_{4},x_{5} \in \IR \}
[/mm]
Das Umtaufen der Variablen, die vorher [mm] \lambda_i [/mm] hießen, in [mm] x_i [/mm] ist nicht so gut.
Wir nennen sie wieder [mm] \lambda [/mm] und überlegen uns, was Du jetzt weißt:
Sofern Du die [mm] \lambda_i [/mm] so wählst, daß
[mm] \vektor{\lambda_1\\\vdots\\\lambda_6}=\vektor{\lambda_4+\lambda_5\\\lambda_5\\0\\\lambda_4\\\lambda_5\\0},
[/mm]
liefern Dir
[mm] \lambda_{1}*u_1+\lambda_{2}*u_2+\lambda_{3}*u_3=(\lambda_4+\lambda_5)u_1+\lambda_5u_2=\lambda_4u_1+\lambda_5(u_1+u_2)
[/mm]
bzw.
[mm] \lambda_{4}*v_1+\lambda_{5}*v_2+\lambda_{6}*v_3=\lambda_4v_1+\lambda_5v_2
[/mm]
die Vektoren, die sowohl in U als auch in V, also in [mm] U\cap [/mm] V, liegen.
Es ist also [mm] U\cap V=span\{u_1,u_1+u_2\} [/mm] oder auch [mm] U\cap V=span\{v_1, v_2}.
[/mm]
Die aufspannenden Vektoren sind linear unabhängig, also eine Basis von [mm] U\cap [/mm] V.
Du hattest das schon ziemlich richtig gemacht:
>
> Nun betrachte ich nur die rechte Seite der folgenden
> Gleichung
> [mm]\lambda_{1}*u1+\lambda_{2}*u2+\lambda_{3}*u3[/mm] =
> [mm]\lambda_{4}*v1+\lambda_{5}*v2+\lambda_{6}*v3[/mm]
>
> (ab jetzt bin ich mir unsicher)
>
> [mm]\Rightarrow[/mm] [mm] Span\{ \lambda_{4} * \vektor{ 1 \\ 1 \\ 0 \\ 0 \\ 1} + \lambda_{5}* ...\}
[/mm]
>
> Dass die Teile lin. unabh. sind, sieht man relativ schnell.
> Also auch eine Basis von U [mm]\cap[/mm] V
>
> Was muss ich tun um die Basis von U+V zu berechnen?
Eine Basis von U+V kannst Du schnell aus der von Dir berechneten Zeilenstufenform ablesen:
> [mm]\pmat{ \red{1} & 2 & 0 & -1 & -3 & 0 \\ 0 & \red{1} & 0 & 0 & -1 & 1 \\ 0 & 0 & \red{1} & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & \red{1} \\ 0 & 0 & 0 & 0 & 0 & 0 }[/mm]
Die führenden Elemente der Nichtnullzeilen stehen in Spalte 1,2,3,6,
also bilden die Vektoren der 1.,2.,3.,6. Spalte der Ursprungsmatrix eine Basis von U+V, hier also [mm] u_1, u_2, u_3, v_3.
[/mm]
LG Angela
> Müsste
> das nicht fast das gleiche sein wie U [mm]\cap[/mm] V? Besten Dank
> schon einmal für die Mühen!!
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Auch dir vielen lieben Dank, hat mir sehr geholfen! Schönen Tag dir auch :)
|
|
|
|