www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Schnittpunkt - Gerade / Kreis
Schnittpunkt - Gerade / Kreis < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt - Gerade / Kreis: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 14.01.2008
Autor: Meterbrot

Aufgabe
Gegeben ist
der Kreis k mit der Gleichung [mm] 25=[\vec{x}-\vektor{2 \\ 5}²] [/mm] und der Koordinatengleichung x²-4x+y²-10y=-4
und die Gerade g: [mm] \vec{x}=\vektor{2 \\ 7}+k*\vektor{3 \\ 4}. [/mm]
Berechne die Schnittpunkte A und B der Graden mit dem Kreis.

Mein Lösungsansatz:
x=3k+2   y=4k+7
(3k+2)²-4(3k+2)+(4k+7)²-10(4k+7)=-4
[mm] \gdw [/mm] 9k²+12k+4-12k-8+16k²+56k+49-40k-70=-4
[mm] \gdw [/mm] 25k²+16k-21=0
[mm] \gdw k²+\bruch{16}{25}-\bruch{21}{25}=0 [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Die Aufgabe habe ich in meiner letzten Mathearbeit bekommen und ich komme einfach nicht auf die richtige Lösung, obwohl es laut meinem Lehrer beide Punkte berechnet werden könnten. Die Formel sieht ja schon zum Schluss sehr komisch aus, aber wenn ich sie in die p-q-Formel einsetze, wird der Radiant negativ, so dass es eigentlich keine Schnittpunkte geben sollte.
Kann sich jemand das bitte einmal ansehen?

        
Bezug
Schnittpunkt - Gerade / Kreis: Edit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 14.01.2008
Autor: Marcel

Hallo,

sofern Du richtig gerechnet hast, steht doch am Ende da:
[mm] k^2-\frac{5}{25}=0 [/mm]
und damit
[mm] k=\pm \frac{1}{\sqrt{5}}
[/mm]

Leider hattest Du Dich vertippt:
Am Ende hätte dort
$ [mm] \gdw k²+\bruch{16}{25}k-\bruch{21}{25}=0 [/mm] $
stehen müssen, mit [mm] $p=\frac{16}{25}$ [/mm] und [mm] $q=-\frac{21}{25}$ [/mm]
wäre dann
[mm] $k_{1,2}=-\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ [/mm]
[mm] $=-\frac{8}{25}\pm \sqrt{\frac{64-(-21)*25}{25^2}}$ [/mm]
[mm] $=-\frac{8}{25}\pm \frac{\sqrt{589}}{25}$ [/mm]

(Beachte, dass die Gleichung der Form
[mm] $x^2+px+q=0$ [/mm]
(unter der Voraussetzung, dass alles im rellen definiert ist) die Lösungen [mm] $x_{1,2}=-\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ [/mm] hat (der Beweis dazu geht übrigens über quadratische Ergänzung).
D.h., um $p$ und $q$ hier ablesen zu können, schreibst Du einfach:
[mm] $k²+\frac{16}{25}k-\bruch{21}{25}=0$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $k^2+\underbrace{\frac{16}{25}}_{=p}*k+\underbrace{\left(-\frac{21}{25}\right)}_{=q}=0$.) [/mm]

P.S.:
Zur Kontrolle:
[Dateianhang nicht öffentlich]

Gruß,
Marcel

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Schnittpunkt - Gerade / Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 14.01.2008
Autor: Maggons

Huhu

Spontan hätte ich für k

k= -1,291 und k=0,65077

Ich hoffe du hast in deiner letzten Zeile das k beim 2. Summand vergessen und nicht einfach unter den Tisch fallen lassen.

wieso sollte das nicht aufgehen?
Ich kann leider, zu meiner Schande, die p-q-Formel nicht so ganz aber wenn es mit meiner quadratischen Ergänzung geht, sollte es auch mit der p-q-Formel gehen.

Die Schnittpunkte lägen dann [mm] bei\approx [/mm]

[mm] \vektor{-1,872 \\ 1,84} [/mm] und [mm] \vektor{3,95 \\ 9,603}. [/mm]

Ich weiß nicht, ob du dich nur bei der pq- Formel irgendwo vertan hast; schätze ich einfach mal :/

Lg



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de