www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Schnittpunkt Funktionsschar
Schnittpunkt Funktionsschar < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Sa 28.06.2008
Autor: raida

Hallo,
Wie zeige ich, dass sich alle Kurven der Funktionsschar fz

fz(x) = z*x + 5 /[x²-1]

in einem Punkt schneiden?

Vielen Dank!

gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkt Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Sa 28.06.2008
Autor: ardik

Hallo raida,

> Hallo,
>  Wie zeige ich, dass sich alle Kurven der Funktionsschar
> fz
>  
> fz(x) = z*x + 5 /[x²-1]
>  
> in einem Punkt schneiden?

indem Du den Schnittpunkt je zweier Kurven bildest. Und zwar ganz allgemein.

Dazu nimmst Du als als Parameter [mm] z_1 [/mm] und [mm] z_2: [/mm]

[mm] $f_{z_1}(x)=f_{z_2}(x)$ [/mm]

und erhältst einen Schnittpunkt, der nicht von z abhängt.

Schöne Grüße
 ardik

Bezug
                
Bezug
Schnittpunkt Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Sa 28.06.2008
Autor: raida

Hallo,
danke für deine Antwort!
das habe ich auch gedacht, aber das geht irgendwie nicht weil sich alles herauskürzt und
z1 = z2 herauskommt

vgl.:

z1*x + 5 /[x²-1] = z2*x +5/[x²-1]

als nächstes habe ich versucht (weil x ja bei anderem z nicht gleich sein kann) links x1 und rechts x2 einzusetzen...es kommt ein ewig langer Term heraus, aber da muss es wohl eine andere Lösung geben!??

danke!

gruß

Bezug
                        
Bezug
Schnittpunkt Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 28.06.2008
Autor: M.Rex

Hallo

Löse die entstehende Gleichung mal nach x auf.

[mm] \bruch{z_{1}x+5}{x²-1}=\bruch{z_{2}x+5}{x²-1} [/mm]

Oder ist [mm] f_{z}(x)=z*x+\bruch{5}{x²-1} [/mm] ? Dann solltest du das mit den Formeleditor auch so schreiben.
(den solltest du generell benutzen, das ist hilfreicher für die Helfer).

Wie auch immer, du musst die dann entstehende Gleichung nach x auflösen. Dann solltest du mindestens einen Schnittpunkt bekommen, indem kein z mehr vorkommt.

Marius

Bezug
                                
Bezug
Schnittpunkt Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 28.06.2008
Autor: raida

Nein ist schon
[mm] \bruch{z_1*x+5}{x^2-1} [/mm] = [mm] \bruch{z_2*x+5}{x^2-1} [/mm]

Ich verstehe aber nicht, wie ich hier nach x auflösen soll es kürzt sich doch alles heraus bzw. wenn ich ausmultipliziere kann ich das kein x erhalten da ich dann folgendes erhalte:

[mm] x^3(z_1-z_2)-x(z_1-z_2) [/mm] = 0

Bezug
                                        
Bezug
Schnittpunkt Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Sa 28.06.2008
Autor: ardik

Hallo raida,

Da [mm] $z_1 \ne z_2$ [/mm] (sonst sind es ja keine unterschiedlichen Kurven) ist [mm] $z_1-z_2 \ne [/mm] 0$ also kannst Du durch [mm] $(z_1-z_2)$ [/mm] teilen... ;-)

Schöne Grüße,
ardik


Bezug
                                                
Bezug
Schnittpunkt Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Sa 28.06.2008
Autor: raida

Irgendwie versteh ich das nicht...
Wenn ich:

[mm] x^3(z_1-z_2)-x(z_1-z_2) [/mm] = 0

durch [mm] (z_1-z_2) [/mm] teile dann erhalte ich doch [mm] x^3 [/mm] = x bzw. [mm] x^2=1 [/mm] also x=1
Soll das die Lösung sein?

Danke und
Gruß

Bezug
                                                        
Bezug
Schnittpunkt Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 28.06.2008
Autor: M.Rex


> Irgendwie versteh ich das nicht...
>  Wenn ich:
>  
> [mm]x^3(z_1-z_2)-x(z_1-z_2)[/mm] = 0
>  
> durch [mm](z_1-z_2)[/mm] teile dann erhalte ich doch [mm]x^3[/mm] = x bzw.
> [mm]x^2=1[/mm] also x=1
> Soll das die Lösung sein?

Fast:

Aus

[mm] x^{3}*(z_{1}-z_{2})-x*(z_{1}-z_{2}) [/mm]
folgt:

[mm] x^{3}*(z_{1}-z_{2})-x*(z_{1}-z_{2})=0 [/mm]
[mm] \gdw x((z_{1}-z_{2})x²-(z_{1}-z_{2})=0 [/mm]
[mm] \Rightarrow [/mm] x=0 oder [mm] (z_{1}-z_{2})x²-(z_{1}-z_{2})=0 [/mm]
[mm] \gdw [/mm] x=0 oder x²-1=0
[mm] \gdw [/mm] x=0 oder [mm] x=\pm1 [/mm]

Also hast du drei "Kandidaten" für Schnittpunkte unabhängig von z.

Jetzt musst du hast mal die y-Koordinaten dieser Punkte bestimmen, um sicher zu gehen, dass auch diese von z unabhängig sind.

>  
> Danke und
>  Gruß

Marius

Bezug
                                                                
Bezug
Schnittpunkt Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Sa 28.06.2008
Autor: raida

Alles klar danke an alle! Klasse Forum!

Bezug
                        
Bezug
Schnittpunkt Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 28.06.2008
Autor: ardik

Hallo raida,

> (weil x ja bei anderem z
> nicht gleich sein kann)

DOCH!

Das ist ja grade das Prinzip bei der Schnittpunktbestimmung, dass man den Punkt sucht, der bei ein und demselben x (und y -> daher das Gleichsetzen) beide Funktionsgleichungen erfüllt (also auf beiden Kurven liegt)

Schöne Grüße
 ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de