www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Schnittpunkt Geraden
Schnittpunkt Geraden < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Geraden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 08.03.2021
Autor: knorki7

Aufgabe
Ein Zug bewegt sich innerhalb von 4 Stunden von K(-120/100) nach M(200/-200). Ein anderer Zug fährt von B(325/270) aus jede Stunde in Richtung s(-98/-143)

a) Wann und wo treffen sich beide Züge? (Angabe der Koordinaten in km)
b) Welche vereinfachte Annahme wurde hier getroffen?

Soweit ist die Aufgabe eigentlich klar.

Zug von K nach M: [mm] \begin{pmatrix} 200 \\ -200 \end{pmatrix} [/mm] + t * [mm] \begin{pmatrix} 80 \\ -75 \end{pmatrix} [/mm]

Hier habe ich den Richtungsvektor durch vier geteilt, damit t auch dann stündlich ist. Der Richtungsvektor wäre ja sonst auf 4 Stunden gewesen.

Zug von B in Richtung s: [mm] \begin{pmatrix} 325 \\ 270 \end{pmatrix} [/mm] + v * [mm] \begin{pmatrix} -98 \\ -143 \end{pmatrix} [/mm]

Soweit so gut. Dann den Schnittpunkt bestimmen, der sich für t = -1.5 und v = 2.5 ergibt.

Also ist der Schnittpunkt [mm] \begin{pmatrix} 80 \\ -87.5 \end{pmatrix} [/mm]

Frage:

Zu a) Die Aufgabe ist nun so gestellt (der Aufgabentext), als müssten die sich treffen. Aber es ist ja so, dass der eine Zug nach 1,5 Stunden den Punkt passiert und der andere nach 2,5 Stunden, sodass die eben nicht kollidieren oder sich treffen. Oder was übersehe ich hier?

Zu b) Unterstellt wird, dass die Züge nur geradeaus fahren und mit gleichbleibender Geschwindigkeit ohne Stops und dergleichen.

Besten Dank!

        
Bezug
Schnittpunkt Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mo 08.03.2021
Autor: fred97


> Ein Zug bewegt sich innerhalb von 4 Stunden von K(-120/100)
> nach M(200/-200). Ein anderer Zug fährt von B(325/270) aus
> jede Stunde in Richtung s(-98/-143)
>  
> a) Wann und wo treffen sich beide Züge? (Angabe der
> Koordinaten in km)
>  b) Welche vereinfachte Annahme wurde hier getroffen?
>  Soweit ist die Aufgabe eigentlich klar.
>  
> Zug von K nach M: [mm]\begin{pmatrix} 200 \\ -200 \end{pmatrix}[/mm]
> + t * [mm]\begin{pmatrix} 80 \\ -75 \end{pmatrix}[/mm]
>  
> Hier habe ich den Richtungsvektor durch vier geteilt, damit
> t auch dann stündlich ist. Der Richtungsvektor wäre ja
> sonst auf 4 Stunden gewesen.
>  
> Zug von B in Richtung s: [mm]\begin{pmatrix} 325 \\ 270 \end{pmatrix}[/mm]
> + v * [mm]\begin{pmatrix} -98 \\ -143 \end{pmatrix}[/mm]
>  
> Soweit so gut. Dann den Schnittpunkt bestimmen, der sich
> für t = -1.5 und v = 2.5 ergibt.
>  
> Also ist der Schnittpunkt [mm]\begin{pmatrix} 80 \\ -87.5 \end{pmatrix}[/mm]
>  
> Frage:
>
> Zu a) Die Aufgabe ist nun so gestellt (der Aufgabentext),
> als müssten die sich treffen. Aber es ist ja so, dass der
> eine Zug nach 1,5 Stunden den Punkt passiert und der andere
> nach 2,5 Stunden, sodass die eben nicht kollidieren oder
> sich treffen. Oder was übersehe ich hier?


Ich denke schon, dass Du etwas übersiehst.

Stell Dir vor , Du wohnst in der Nähe von Hamburg und benötigst mit dem Auto etwa eine halbe Stunde bis zur Hamburger Kunsthalle.

Ich dagegen benöteige etwa acht Stunden bis zur Hamburger Kunsthalle.

Dennoch ist es möglich, dass wir uns am 13.3.2021 um 17 Uhr an der  Hamburger Kunsthalle treffen.

Verstehst Du, was ich Dir sagen will ?


>  
> Zu b) Unterstellt wird, dass die Züge nur geradeaus fahren
> und mit gleichbleibender Geschwindigkeit ohne Stops und
> dergleichen.

Das ist O.K.

>  
> Besten Dank!


Bezug
        
Bezug
Schnittpunkt Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mi 10.03.2021
Autor: HJKweseleit


> Ein Zug bewegt sich innerhalb von 4 Stunden von K(-120/100)
> nach M(200/-200). Ein anderer Zug fährt von B(325/270) aus
> jede Stunde in Richtung s(-98/-143)
>  
> a) Wann und wo treffen sich beide Züge? (Angabe der
> Koordinaten in km)
>  b) Welche vereinfachte Annahme wurde hier getroffen?
>  Soweit ist die Aufgabe eigentlich klar.
>  
> Zug von K nach M: [mm]\begin{pmatrix} 200 \\ -200 \end{pmatrix}[/mm] + t * [mm]\begin{pmatrix} 80 \\ -75 \end{pmatrix}[/mm]

[notok]

Zur Zeit t=0 ist dein Zug bereits in M und fährt dann weiter, landet also nie in K. Der zweite Vektor ist richtig.


Korrekt also: Zug von K nach M: [mm]\begin{pmatrix} -120 \\ 100 \end{pmatrix}[/mm] + t * [mm]\begin{pmatrix} 80 \\ -75 \end{pmatrix}[/mm]

>  
> Hier habe ich den Richtungsvektor durch vier geteilt, damit
> t auch dann stündlich ist. Der Richtungsvektor wäre ja
> sonst auf 4 Stunden gewesen.
>  
> Zug von B in Richtung s: [mm]\begin{pmatrix} 325 \\ 270 \end{pmatrix}[/mm]  + v * [mm]\begin{pmatrix} -98 \\ -143 \end{pmatrix}[/mm]

[ok]

Du erhältst nun t=v=2,5.


>  
> Soweit so gut. Dann den Schnittpunkt bestimmen, der sich
> für t = -1.5 und v = 2.5 ergibt.
>  
> Also ist der Schnittpunkt [mm]\begin{pmatrix} 80 \\ -87.5 \end{pmatrix}[/mm]
>  
> Frage:
>
> Zu a) Die Aufgabe ist nun so gestellt (der Aufgabentext),
> als müssten die sich treffen. Aber es ist ja so, dass der
> eine Zug nach 1,5 Stunden den Punkt passiert und der andere
> nach 2,5 Stunden, sodass die eben nicht kollidieren oder
> sich treffen. Oder was übersehe ich hier?
>  
> Zu b) Unterstellt wird, dass die Züge nur geradeaus fahren
> und mit gleichbleibender Geschwindigkeit ohne Stops und
> dergleichen.

Zusätzlich noch, dass sie zur selben Zeit starten.

>  
> Besten Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de