www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Schnittpunkt und Grenzwerte
Schnittpunkt und Grenzwerte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt und Grenzwerte: Schneiden in einem Punkt
Status: (Frage) beantwortet Status 
Datum: 17:22 So 08.02.2015
Autor: weihnachtsherz

Aufgabe
Gegeben Sei
f(x)=x³ * [mm] e^{-0,5x}^2 [/mm]           ; x€R

Ihr Schaubild sei K.

Für welche Werte von a schneidet K die Kurve mit der Gleichung y=ax³ in einem Punkt S(X/Y) mit x>0

Gegen welchen Grenzwert strebt a für x->0?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich habe die Gleichung f(x) gleichgesetzt mit [mm] y=ax^3 [/mm]

Ergebnis:  [mm] \bruch{-x^2}{e^2} [/mm] =  [mm] \bruch{ax^3}{x^3} [/mm]

Ist dies richtig? - Kann ich hier kürzen??
Wie muss ich nun weiterrechnen. Ich weiß nicht, wie ich den Logarithmus nun anwenden soll.

        
Bezug
Schnittpunkt und Grenzwerte: Rechnung falsch
Status: (Antwort) fertig Status 
Datum: 18:03 So 08.02.2015
Autor: weightgainer


> Gegeben Sei
>  f(x)=x³ * [mm]e^{-0,5x}^2[/mm]           ; x€R
>  
> Ihr Schaubild sei K.

Ich vermute die Funktion f(x) = [mm] $x^3 [/mm] * [mm] e^{-0.5 x^2}$ [/mm] ist gemeint.

>  
> Für welche Werte von a schneidet K die Kurve mit der
> Gleichung y=ax³ in einem Punkt S(X/Y) mit x>0
>  
> Gegen welchen Grenzwert strebt a für x->0?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Ich habe die Gleichung f(x) gleichgesetzt mit [mm]y=ax^3[/mm]

Gute Idee.

>  
> Ergebnis:  [mm] \bruch{-x^2}{e^2}[/mm] =  [mm] \bruch{ax^3}{x^3}[/mm]

Diese Rechnung erschließt sich mir nicht...

Zunächst geht es ja um das a und danach lässt sich herrlich einfach auflösen, indem man die Gleichung durch [mm] $^x^3$ [/mm] dividiert - was geht, da wir ohnehin nur x>0 suchen und betrachten.
Damit ist $a= [mm] e^{-0.5 x^2}$ [/mm]

>
> Ist dies richtig? - Kann ich hier kürzen??
>  Wie muss ich nun weiterrechnen. Ich weiß nicht, wie ich
> den Logarithmus nun anwenden soll.

Jetzt kann man schon sehen, für welche Werte von a diese Gleichung überhaupt nur erfüllt werden kann (unter der Voraussetzung x>0), man kann es aber auch herausfinden, indem man die Gleichung nach x auflöst (wozu man dann den Logarithmus braucht):
(sorry, wird jetzt etwas kürzer, muss los)
Zunächst mal muss a>0 gelten, da e hoch bla ebenfalls immer >0 ist.
Dann den ln auf beiden Seiten ziehen und umstellen gibt
[mm] $x^2 [/mm] = -2 * ln(a)$
Hier sieht man, dass das nur geht, wenn $ln(a)<0$ ist, d.h. a<1.

Damit gibt es also im gewünschten Bereich einen Schnittpunkt für 0<a<1 und für den Grenzwert benutzt man dann die nach a umgestellte Form von oben und lässt x gegen 0 gehen.

Klingt kompliziert, die Rechnungen sind aber wirklich sehr einfach :-).





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de