www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittpunkte Ebene y-Achse
Schnittpunkte Ebene y-Achse < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte Ebene y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:01 Mi 18.07.2012
Autor: Mathe-Andi

Hallo,
"Berechnen Sie die Koordinaten der Schnittpunkte der Ebene mit der y-Achse." [mm] E:\vec{x}=\vektor{1 \\ -3 \\ 4}+r \vektor{1 \\ -1 \\ 0,5}+s\vektor{1 \\ 6 \\ -1}. [/mm]
Ich weiß, dass mein Ansatz so aussehen muss (oder?):

[mm] \vektor{0 \\ y \\ 0}=\vektor{1 \\ -3 \\ 4}+r \vektor{1 \\ -1 \\ 0,5}+s\vektor{1 \\ 6 \\ -1} [/mm]

Und nun?

Gleichungssystem lösen?

I.    0=1+r+s
II.  y=-3-r+6s
III. 0=4+0,5r-s

Bekomme ich raus:

[mm] r=-\bruch{10}{3} [/mm]
[mm] s=\bruch{7}{3} [/mm]
[mm] y=\bruch{23}{3} [/mm]

Und nun? Was sagt mir das? Hier weiß ich nicht wie es weiter geht.
Oder bin ich schon fertig und der Schnittpunkt der Ebene mit der y-Achse ist [mm] \vektor{0 \\ \bruch{23}{3} \\ 0}. [/mm] Warum ist in der Fragestellung die Mehrzahl von Schnittpunkt verwendet? Gibt es mehrere Schnittpunkte der Ebene mit der y-Achse?



        
Bezug
Schnittpunkte Ebene y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 03:07 Mi 18.07.2012
Autor: Richie1401

Moin,

Ich habe das System nicht nachgerechnet, aber es sieht gut aus. Zumindest klappt es ja von den Werten her.

Warum spricht man von SchnittpunktEN? Ja, gute Frage! Wenn man eine Ebene im [mm] \IR^3 [/mm] hat, dann gibt es ja nicht viel Auswahl an Lagemöglichkeiten: a) Ebene liegt vollständig auf der Geraden b) es gibt genau einen Schnittpunkt oder c) die Ebene ist parallel zu der Geraden.

Das ganze kann man sich bildlich ja schon gut vorstellen.

Deine Vorgehensweise ist jedoch richtig. Und fertig bist du. [mm] y=\frac{23}{3} [/mm] gibt dir die y-Koordinate an. x und z sind ja bekannt. r und s sind nur die Werte, die dir "quasi" etwas über die Entfernung vom Stützvektor zum Schnittpunkt sagen (wie oft muss man den einen Richtungsvektor und wie oft den anderen Richtungsvektor gehen, damit man zu dem Punkt kommt).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de