www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Schnittpunkte zweier Kreise
Schnittpunkte zweier Kreise < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mo 17.03.2008
Autor: lalaglobal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich schreibe im Moment an einer Facharbeit über Satellitennavigation und wollte eine Beispielaufgabe mit einbringen. In diesem Beispiel wollte ich zeigen, wie die Position bestimmt wird.

Nun zum Mathematischen Teil. Die Position wird durch den Schnittpunkt von drei Kreisen angegeben. Da wir diese art von Schnittpunktberechnung noch nicht in der Schule durchgenommen haben stehe ich grade etwas auf dem Schlauch.

Ich bin leider nicht weiter gekommen als bis zur Kreisfunktion: y = ym +- [mm] \wurzel{r² -(x-xm)²} [/mm]
Ich habe mir nun als Beispielaufgabe aufgeschrieben: Kreis1: m= (3/4) r= 4 und Kreis2: m= (9/6) r= 3.
Ich wollte nun die Schnittpunkte dieser beiden Kreise ausrechnen. Ich hoffe da kann mir jemand helfen. Gehe ich richtig davon aus, dass ich Gleichsetzen muss?

        
Bezug
Schnittpunkte zweier Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mo 17.03.2008
Autor: Zneques

Hallo,

Kreise werden meisten in einer der Formen angegeben :

[mm] \left|(\vec{m}-\vec{x}\right|=r [/mm]
[mm] \left(\vec{m}-\vec{x}\right)^2=r^2 [/mm] , oder
[mm] (m_1-x_1)^2+(m_2-x_2)^2+(m_3-x_3)^2=r^2 [/mm]

Da das Gleichsetzen aber sehr umständlich ist und auch schwer zu interpretierende Ergebnisse liefert, löst man das Problem auf mehr geometrische Art.

Zuerst berechnet man den Abstand [mm] M_1 [/mm] zu [mm] M_2 [/mm] der beiden Mittelpunkte.
Dann, wenn der Abstand nicht größer als [mm] r_1+r_2 [/mm] ist, bildet man das Dreieck [mm] M_1 [/mm] , [mm] M_2 [/mm] und S (ein Schnittpunkt.)
Dabei gilt :
[mm] |\overline{M_1M_2}|=d [/mm]
[mm] |\overline{M_1S}|=r_1 [/mm]
[mm] |\overline{M_2S}|=r_2 [/mm]

Jetzt kannst du mit Winkelgesetzen die Maße des Schnittkreises, sowie dessen Ebene berechnen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de