www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Schnittwinkel von Kurven
Schnittwinkel von Kurven < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel von Kurven: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:39 Di 14.05.2013
Autor: Student18

Aufgabe
Überprüfen Sie die Winkeltreue der komplexen Abbildung f: z [mm] \to [/mm] cosh(z) im Punkt i für die zwei Kurven [mm] \gamma_1 [/mm] : [mm] t\to t+i(t^2+1), \gamma_2: t\to [/mm] it mit
- [mm] \infty< [/mm] t< [mm] \infty. [/mm]
Die Tangenten der beiden Kurven am Schnittpunkt erfahren unter der Abbildung f eine Drehung um den Schnittpunkt.Wie groß ist der Drehwinkel.

Hallo,

ich weiß nicht, wie ich anfangen soll.Ich bitte um Hilfe.

Ich habe diese Frage in keinem Forumauf anderen Internetseiten gestellt.

Gruß

        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Di 14.05.2013
Autor: Al-Chwarizmi


> Überprüfen Sie die Winkeltreue der komplexen Abbildung f:
> z [mm]\to[/mm] cosh(z) im Punkt i für die zwei Kurven [mm]\gamma_1[/mm] :
> [mm]t\to t+i(t^2+1), \gamma_2: t\to[/mm] it mit
>  - [mm]\infty<[/mm] t< [mm]\infty.[/mm]
>  Die Tangenten der beiden Kurven am Schnittpunkt erfahren
> unter der Abbildung f eine Drehung um den Schnittpunkt.Wie
> groß ist der Drehwinkel.
>  Hallo,
>  
> ich weiß nicht, wie ich anfangen soll.Ich bitte um Hilfe.

> Gruß


Hallo Student18,

ich würde sofort empfehlen, die Parameter der
beiden Kurven mit unterschiedlichen Buchstaben
zu bezeichnen, etwa s und t anstatt beidemal t !

Zuerst solltest du zeigen, dass die beiden Kurven
tatsächlich durch den Punkt i verlaufen. Für welche
Parameterwerte [mm] s_0 [/mm] bzw. [mm] t_0 [/mm] ist dies der Fall ?

Mache dir auch klar, welches der Punkt f(i) ist.

Um dann Informationen über die Tangenten-
richtungen zu erhalten, musst du natürlich
(bildlich gesprochen) die Lupe bzw. ein Mikroskop
mit variablem Zoom anlegen und die ursprüngliche
und die dazu gehörige Bildkurve in der Umgebung
der Punkte zu benachbarten Parameterwerten
betrachten. Stichwort: Limites mit  [mm] $s\to s_0$ [/mm] bzw.  [mm] $t\to t_0$ [/mm]

LG ,   Al-Chw.



Bezug
                
Bezug
Schnittwinkel von Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 14.05.2013
Autor: Student18

Hallo,

[mm] \gamma_2 [/mm] steht für eine Gerade durch den Ursprung mit der Steigung 1.
Aber wie sieht [mm] \gamma_1 [/mm] aus?
Ich bitte um Hilfe.

Gruß

Bezug
                        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Di 14.05.2013
Autor: Al-Chwarizmi


> Hallo,
>  
> [mm]\gamma_2[/mm] steht für eine Gerade durch den Ursprung mit der
> Steigung 1.

Nein.
[mm] \gamma_2 [/mm] ist die imaginäre Achse (also nicht Steigung 1,
sondern Steigung unendlich bzw. nicht definiert).

>  Aber wie sieht [mm]\gamma_1[/mm] aus?

Wenn man den Term für [mm] \gamma_1 [/mm] in Real- und Imaginärteil
aufspaltet, sieht man sofort, dass diese Kurve die
Parabel  $\ Im(z)\ =\ [mm] \left(Re(z)\right)^2+1$ [/mm] ist oder einfach [mm] y=x^2+1 [/mm]
mit $\ x=Re(z)$ und $\ y=Im(z)$.

Offensichtlich schneiden sich [mm] \gamma_1 [/mm] und [mm] \gamma_2 [/mm] im
Punkt i der z-Ebene unter einem rechten Winkel.
Nun müsste man sich also weiter mit den Bildkurven,
sagen wir  [mm] $\Gamma_1:=f(\gamma_1)$ [/mm]  und  [mm] $\Gamma_2:=f(\gamma_2)$ [/mm] ,
ihrem Schnittpunkt und ihrem Schnittwinkel in der
w-Ebene beschäftigen.  


LG ,   Al-Chw.

Bezug
                                
Bezug
Schnittwinkel von Kurven: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:12 Mi 15.05.2013
Autor: Student18

Hallo,

Welchen Schnittpunkt haben die beiden Bildkurven und wie ist ihr Schnittwinkel?

Gruß

Bezug
                                        
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:30 Mi 15.05.2013
Autor: angela.h.b.


> Hallo,

>

> Welchen Schnittpunkt haben die beiden Bildkurven und wie
> ist ihr Schnittwinkel?

>

> Gruß

Hallo,

wenn ich das Forum recht verstehe, wäre es an Dir, das auszurechnen. Oder es zumindest zu versuchen und die Versuche hier zu posten.

LG Angela

Bezug
                                        
Bezug
Schnittwinkel von Kurven: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Fr 17.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Di 14.05.2013
Autor: fred97

Wenn nur gefragt ist, ob f im Punkt i winkeltreu ist, so mußt Du untersuchen, ob f in einer Umgebung von i holomorph ist (das ist natürlich der Fall) und ob $f'(i) [mm] \ne [/mm] 0$ ist.

FRED

Bezug
                
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Di 14.05.2013
Autor: Al-Chwarizmi


> Wenn nur gefragt ist, ob f im Punkt i winkeltreu ist, so
> mußt Du untersuchen, ob f in einer Umgebung von i
> holomorph ist (das ist natürlich der Fall) und ob [mm]f'(i) \ne 0[/mm]
> ist.
>  
> FRED


Hallo FRED,

falls bekannt ist, dass aus Holomorphie (in einem
Punkt [mm] z_0) [/mm] auch die Winkeltreue in dem betreffenden
Punkt folgt  (unter der Zusatzbedingung [mm] f'(z_0)\ne0), [/mm]
ist dies klar.  Dabei müsste man sich auf einen
bereits bewiesenen Satz stützen können.
Vielleicht wurde aber eben gerade dieser Satz noch
nicht bewiesen, sodass man sich selber noch etwas
Konkretes klar machen muss - durch einen detail-
lierten Nachweis.

LG ,   Al  


Bezug
                
Bezug
Schnittwinkel von Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Di 14.05.2013
Autor: Student18

Hallo,

ich habe berechnet:

f(z)=cosh(z)
f'(z)=sinh(z)
[mm] f'(i)=sinh(i)\ne [/mm] 0
[mm] f'(i)=isin(1)\ne [/mm] 0

Gruß

Bezug
                        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 06:13 Mi 15.05.2013
Autor: fred97


> Hallo,
>  
> ich habe berechnet:
>  
> f(z)=cosh(z)
>  f'(z)=sinh(z)
>  [mm]f'(i)=sinh(i)\ne[/mm] 0
>  [mm]f'(i)=isin(1)\ne[/mm] 0

Ja

FRED

>  
> Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de