www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Schon wieder Graphen
Schon wieder Graphen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schon wieder Graphen: isomorphe Teilgraphen / Bäume
Status: (Frage) beantwortet Status 
Datum: 14:38 Fr 24.02.2006
Autor: dump_0

Hallo nochmal, ich schon wieder.

Ich hänge leider bei einer Aufgabe fest die folgendermaßen lautet:

Es sei G ein einfacher Graph, in dem der kleinste vorkommende Knotengrad
[tex]\delta (G) \ge k[/tex] ist ([tex]k \in IN[/tex], und es sei T ein Baum mit [tex]k[/tex] vielen Kanten.
Zeigen Sie: G hat einen zu T isomorphen Teilgraphen.

Damit der Teilgraph isomorph zu T ist, müssen Kantenzahl, Knotenzahl und Gradsequenzen übereinstimmen.

Da [tex]\delta (G) \ge k[/tex] ist, muss es weitere Knoten in G geben mit mind. dem selbsten Knotengrad, die Kantenzahl und Knotenzahl ist damit ja schonmal erfüllt. Bei den Gradsequenzen weiß ich nicht so ganz wie ich das zeigen kann. Ich denke aber das der Lösungsweg ein anderer ist, auf den ich leider nicht komme :(
Ich würd mich über eure Hilfe freuen.


Mfg
[mm] dump_0 [/mm]

        
Bezug
Schon wieder Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 26.02.2006
Autor: mathiash

Hallo Freunde gepflegter karnevalistischer Graphentheorie,

nimm doch einfach einen Beweis via Induktion nach k:

Ind.Anfang ist klar, also von k nach k+1:

Nimm einen Knoten von G, mappe ihn auf ein Blatt von T und einen bel. Nachbarn auf seinen Nachbarn in T. Dann loesche den Knoten und die entspr. Kante aus G, der verbleibende Restgraph hat Knotengrad [mm] \geq [/mm] k-1, und wir sehen, dass wir uber Induktion eigentlich folgende staerkere Aussage zeigen (typischerweise merkt man sowas erst waehrend des Beweises):

Geg. G und T wie in der Aufgabenstellung sowie ein Blatt t von T und ein Knoten v von G, dann gibt es einen zu T isom. Teilgraphen von G, bei dem
v auf t gemappt wird.

Närrische Grüsse und
bis Dienstag in alter Frische,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de