Schröder-Bernstein < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Di 30.10.2007 | Autor: | Kyrill |
Aufgabe | Gibt es ein Analogon zum Satz von Schröder-Bernstein in der Gruppentheorie? Mit anderen Worten: Sind Gruppen G und H, für die es Monomorphismen G [mm] \to [/mm] H und H [mm] \to [/mm] G gibt, isomorph`? |
Hallo,
das ist eine Aufgabe von meinem Algebra Übungszettel. Und zwar ist es die letzte Aufgabe, die immer nen bißchen schwieriger ist, "um unseren Horizont zu erweitern", sagt der Prof....
Naja, da sie aber keine Zusatzaufgabe ist, sondern man sie machen muss. Würde ich schon gerne wissen, ob mir jemand helfen kann "meinen Horizont zu erweitern"?
Wäre super!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:24 Di 30.10.2007 | Autor: | felixf |
Hallo!
> Gibt es ein Analogon zum Satz von Schröder-Bernstein in der
> Gruppentheorie? Mit anderen Worten: Sind Gruppen G und H,
> für die es Monomorphismen G [mm]\to[/mm] H und H [mm]\to[/mm] G gibt,
> isomorph'?
Das ist eine echt interessante Frage
Ich wuerde mal spontan nein sagen. Zwei Gruppen, mit denen das funktionieren koennte, waeren $G = [mm] \prod_{n\in\IN_{>0}} \IZ/2^n\IZ$ [/mm] und $H = [mm] \prod_{n\in\IN_{>0}} \IZ/2^{n+1}\IZ$. [/mm] Da $G [mm] \cong [/mm] H [mm] \times \IZ/2\IZ$ [/mm] ist, kann man $H$ als Untergruppe von $G$ auffassen, womit es einen Monomorphismus $H [mm] \to [/mm] G$ gibt. Ebenso laesst sich ein Monomorphismus $G [mm] \to [/mm] H$ finden, indem man die $i$-te Komponente von $G$ auf die $i+1$-te Komponente von $H$ abbildet (indem man mit zwei multipliziert).
So. Jetzt verbleibt es allerdings zu zeigen, dass $G$ und $H$ nicht isomorph sind; dazu faellt mir grad spontan keine gute Idee ein (ich bin mir nicht einmal 100%ig sicher ob dies wirklich der Fall ist)... Aber vielleicht hat ja sonstwer noch eine Idee?
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:42 Mi 31.10.2007 | Autor: | SEcki |
> Aber vielleicht hat ja
> sonstwer noch eine Idee?
Tja, ich als algebraischer Topologe bin gerade heute mal wieder über "divisible groups" gestolpert, und behaupte frech, dass die Gruppen nicht isomorph sind, denn:
In der einen gibt es ein Element x mit 1. [m]2*x=0[/m] und 2. es gibt kein y mit [m]2*y=y+y=x[/m]. Das Element in G soll eben [m](1,0,0,...)[/m] sein. Das erfüllt offenbar 1. und auch 2. Bei H kann man ja ein Element der Ordnung 2 auf jeden Faktor projezieren, und dort gilt dann ja, wenn 2. erfüllt wäre, [m]\pi(y)+\pi(y)=0(=2^n)[/m]. Wenn n jetzt nicht 1 ist, kann man "teilen", also immer so ein y konstruieren.
Und ja, das ist auch eine Isomoprhieinvariante.
SEcki
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:32 Do 01.11.2007 | Autor: | felixf |
Hallo
> > Aber vielleicht hat ja
> > sonstwer noch eine Idee?
>
> Tja, ich als algebraischer Topologe bin gerade heute mal
> wieder über "divisible groups" gestolpert, und behaupte
> frech, dass die Gruppen nicht isomorph sind, denn:
>
> In der einen gibt es ein Element x mit 1. [m]2*x=0[/m] und 2. es
> gibt kein y mit [m]2*y=y+y=x[/m]. Das Element in G soll eben
> [m](1,0,0,...)[/m] sein. Das erfüllt offenbar 1. und auch 2. Bei H
> kann man ja ein Element der Ordnung 2 auf jeden Faktor
> projezieren, und dort gilt dann ja, wenn 2. erfüllt wäre,
> [m]\pi(y)+\pi(y)=0(=2^n)[/m]. Wenn n jetzt nicht 1 ist, kann man
> "teilen", also immer so ein y konstruieren.
Au ja, stimmt, das ging ja ganz einfach :) Manchmal hab ich echt n Brett vorm Kopf...
Vielen Dank! :)
LG Felix
|
|
|
|
|
Keine leichte Frage. Was zum Beispiel nicht geht, ist aus 2 Monomorphismen immer einen Isomorphismus zu konstruieren. Beispiel: [mm]G, H = \IZ[/mm], [mm]f(z)=2z[/mm] für beide MM. Wenn nur das gegeben ist, dürfte es schwer sein, daraus einen Isomorphismus zu konstruieren.
Andererseits könnte man aus dem Satz von Schröder-Bernstein wohl folgern, dass G und H zumindest gleichmächtig sein müssen und das es damit eine Bijektion geben muss. Fragt sich, ob es sich dabei auch um einen Homomorphismus handelt...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:48 Mi 31.10.2007 | Autor: | felixf |
Hallo
Bisher hab ich keine neue Idee bekommen...
Und ich wuerd mich sehr freuen, wenn der Fragesteller hier die (Muster-)Loesung posten koennte (sobald er diese erfaehrt), da ich (und alle mit denen ich ueber diese Aufgabe gesprochen hab) neugierig auf eine Loesung sind :)
LG Felix
|
|
|
|
|
Also,..
i. a. sind solche Gruppen NICHT isomorph!!!
und zwar betrachte man [mm] \IZ [/mm] x [mm] \produkt_{n=1}^{\infty}\IQ [/mm] mit
[mm] (q_{n}) \mapsto [/mm] (0, [mm] (q_{n}) [/mm] ) wobei [mm] n\in \IN
[/mm]
genauso [mm] \IZ [/mm] x [mm] \produkt_{n=1}^{\infty}\IQ \to \produkt_{n=1}^{\infty}\IQ [/mm] mit (z, [mm] (q_{n}) [/mm] ) [mm] \mapsto [/mm] ( (q'_{n}) )
falls die Gruppen isomorph wären, gäb es also einen Isomprphismus
[mm] \delta: \produkt_{n=1}^{\infty}\IQ \to \IZ [/mm] x [mm] \produkt_{n=1}^{\infty}\IQ
[/mm]
und insbesondere ex. eine Folge [mm] (a_{n}) \in \produkt_{n=1}^{\infty}\IQ [/mm] mit [mm] \delta [/mm] ( [mm] (a_{n}) [/mm] ) = (1, (0) )
dann ist aber [mm] \delta [/mm] ( [mm] (\bruch{a_{n}}{2}) [/mm] ) = [mm] (\bruch{1}{2} [/mm] , (0) ) [mm] \not\in \IZ [/mm] x [mm] \produkt_{n=1}^{\infty}\IQ [/mm] (da [mm] \delta [/mm] Homomorphismus)
[mm] \delta [/mm] ( [mm] (a_{n}) [/mm] ) = [mm] \delta [/mm] ( [mm] (\bruch{a_{n}}{2}) [/mm] + [mm] (\bruch{a_{n}}{2}) [/mm] )
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:31 Di 06.11.2007 | Autor: | SEcki |
> [mm]\delta: \produkt_{n=1}^{\infty}\IQ \to \IZ[/mm] x
> [mm]\produkt_{n=1}^{\infty}\IQ[/mm]
Also die Notation ist ein bissl schlampig - aber die Idee ist genau die, die Felix und ich hatten - also Felix' Gruppen und mein nicht Iso Bweis.
Halbieren ist gleich gewesen! Wow. Was sagt uns das? Es ist wohl das naheliegenste Beispiel, auf das man kommen kann!
SEcki
|
|
|
|
|
jaja... sorry, ich war schon froh, nachdem ich nach 2 stunden wenigstens einigermaßen was zu stande bekommen hatte.
seid nachsichtig mit mir wegen der notation. ich denk ma die idee ist rübergekommen und diejenigen dies wirklich interessiert, die haben auch verstanden, was ich ausdrücken wollte.
aber ich muss zugeben, ich war auch sehr fasziniert. wie so oft in der mathematik;
wenn man erstmal die richtige idee hat, ist es ganz einfach! :)
|
|
|
|