www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Schwerpunkt des Dreiecks
Schwerpunkt des Dreiecks < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt des Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 25.03.2009
Autor: lufthansa7478

Aufgabe 1
Die Punkte An (X|0) mit x [mm] \in [/mm] IR+ sind Eckpunkte von gleichschenkligen Dreiecken AnBnCn. Die Punkte Mn(x|0,75x) sind Mittelpunkte der Seiten [BnCn] und haben die gleiche Abszisse wie die Punkte An.

Aufgabe 2
Zeichne A1B1C1, A2B2C2 und A3B3C3 für x [mm] \in [/mm] {2;4;8} in ein Koordinatensystem.

Aufgabe 3
Gib die Koordinaten der Schwerpunkte Sn in Abhängigkeit von der Abzisse x der Punkte Mn an; zeichne den Trägergraphen der Punkte Sn ein und gib dessen Gleichung an.

Wie bekomme ich Punkt B und C heraus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schwerpunkt des Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Mi 25.03.2009
Autor: Somebody


> Die Punkte An (X|0) mit x [mm]\in[/mm] IR+ sind Eckpunkte von
> gleichschenkligen Dreiecken AnBnCn. Die Punkte Mn(x|0,75x)
> sind Mittelpunkte der Seiten [BnCn] und haben die gleiche
> Abszisse wie die Punkte An.
>  Zeichne A1B1C1, A2B2C2 und A3B3C3 für x [mm]\in[/mm] {2;4;8} in ein
> Koordinatensystem.
>  Gib die Koordinaten der Schwerpunkte Sn in Abhängigkeit
> von der Abzisse x der Punkte Mn an; zeichne den
> Trägergraphen der Punkte Sn ein und gib dessen Gleichung
> an.
>  Wie bekomme ich Punkt B und C heraus?

Ich glaube, dass die Punkte [mm] $B_n$ [/mm] und [mm] $C_n$ [/mm] aufgrund der Angabe von [mm] $A_n(x|0)$ [/mm] und [mm] $M_n(x|0.75x)$ [/mm] nicht eindeutig bestimmt sind. Denn für jedes beliebige [mm] $\Delta [/mm] x>0$ sind [mm] $B_n(x+\Delta [/mm] x|0.75x)$ und [mm] $C_n(x-\Delta [/mm] x|0.75x)$ Punkte, die die gewünschten Eigenschaften haben. - Du kannst diese Punkte also gar nicht (eindeutig) "herausbekommen".

Möglicherweise hatte der Aufgabensteller "gleichseitig" statt "gleichschenklig" schreiben wollen. (Oder steht im Aufgabentext vielleicht tatsächlich "gleichseitig" und Du hast nur den Text falsch wiedergegeben?)



Bezug
                
Bezug
Schwerpunkt des Dreiecks: Aufgabe 1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 25.03.2009
Autor: lufthansa7478

Entschuldigung, ich habe es falsch geschrieben: es heißt gleichseitig

Bezug
        
Bezug
Schwerpunkt des Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mi 25.03.2009
Autor: Somebody


> Die Punkte An (X|0) mit x [mm]\in[/mm] IR+ sind Eckpunkte von
> gleichschenkligen gleichseitigen Dreiecken AnBnCn. Die Punkte Mn(x|0,75x)
> sind Mittelpunkte der Seiten [BnCn] und haben die gleiche
> Abszisse wie die Punkte An.
>  Zeichne A1B1C1, A2B2C2 und A3B3C3 für x [mm]\in[/mm] {2;4;8} in ein
> Koordinatensystem.
>  Gib die Koordinaten der Schwerpunkte Sn in Abhängigkeit
> von der Abzisse x der Punkte Mn an; zeichne den
> Trägergraphen der Punkte Sn ein und gib dessen Gleichung
> an.
>  Wie bekomme ich Punkt B und C heraus?

Du weisst sicher, dass die Höhe im gleichseitigen Dreieck [mm] $\frac{\sqrt{3}}{2}$ [/mm] mal die Seitenlänge ist. Da [mm] $M_n$ [/mm] der Mittelpunkt der Seite [mm] $B_nC_n$ [/mm] ist, muss die Strecke [mm] $A_nM_n$ [/mm] senkrecht auf der Strecke [mm] $B_nC_n$ [/mm] stehen: [mm] $B_n$ [/mm] und [mm] $C_n$ [/mm] haben daher dieselbe zweite Koordinate wie [mm] $M_n$, [/mm] nämlich $0.75x$.
  Löse nun die Gleichung [mm] $\frac{\sqrt{3}}{2}\cdot \overline{B_nC_n}=0.75x$ [/mm] nach $s := [mm] \overline{B_nC_n}$ [/mm] auf. Dann ist [mm] $B_n=(x+s/2|0.75x)$ [/mm] und [mm] $C_n=(x-s/2|0.75x)$. [/mm]
Der Schwerpunkt des Dreiecks teilt bekanntlich die Strecke [mm] $A_nM_n$ [/mm] im Verhältnis $2:1$. Somit ist [mm] $S_n=(x|\tfrac{2}{3}\cdot [/mm] 0.75x)=(x|0.5x)$.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de