www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Bauingenieurwesen" - Schwerpunkt eines 4-tel Kreise
Schwerpunkt eines 4-tel Kreise < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt eines 4-tel Kreise: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 00:14 Do 01.04.2010
Autor: Intelinside

Aufgabe
Hallo ich will die Schwerpunkskoordinaten eines 4-tel Kreises berechnen.

Wie mache ich das ? Wie stelle ich das Flächenelement auf?

Danke im Vorraus
[Dateianhang nicht öffentlich]

Ich weiß die Schwerpunktkoordinaten berechnen sich so :

ys= [mm] \bruch{\integral_{}^{}{y dA}}{\integral_{a}^{b}{ dA}} [/mm]
xs= [mm] \bruch{\integral_{}^{}{x dA}}{\integral_{a}^{b}{ dA}} [/mm]

aber ich kann das nicht rechnen... wie gehe ich an die Sache ran bei Wiki steht nur etwas von Oberflächenberechnung hilft mir nicht.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Schwerpunkt eines 4-tel Kreise: Hinweise
Status: (Antwort) fertig Status 
Datum: 00:20 Do 01.04.2010
Autor: Loddar

Hallo Intelinside!


Ich glaube, Du kannst es Dir ziemlich vereinfachen, wenn Du den Mittelpunkt des Kreises in den Ursprung legst, und den Viertelkreis in den 1. Quadranten drehst.

Dann gilt:
[mm] $$x^2+y^2 [/mm] \ = \ [mm] r^2$$ [/mm]
[mm] $$\Rightarrow [/mm] \ y \ = \ [mm] \wurzel{r^2-x^2}$$ [/mm]

Laut Formelsammlung sollte dann herauskommen:
[mm] $$x_s [/mm] \ = \ [mm] y_s [/mm] \ = \ [mm] \bruch{4*r}{3*\pi}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Schwerpunkt eines 4-tel Kreise: weitere Anregung
Status: (Frage) beantwortet Status 
Datum: 01:26 Do 01.04.2010
Autor: Intelinside

Hallo Loddar danke für deine schnelle Antwort. Also ich probiers mal:

[mm] \integral_{}^{}{dA} [/mm] = [mm] \bruch{\pi}{4}*r^{2} [/mm]

und daraus ergibt sich:

[mm] \bruch{\integral_{}^{}{y}* \bruch{\pi}{4}*r^{2}}{\bruch{\pi}{4}*r^{2}} [/mm]

mit y = [mm] \wurzel[2]{r^{2}-x^{2}} [/mm]

gibt:

[mm] \bruch{\integral_{}^{}{\wurzel[2]{r^{2}-x^{2}} }* \bruch{\pi}{4}*r^{2}}{\bruch{\pi}{4}*r^{2}} [/mm]

ist das jetzt so ungefähr richtig ich glaube nicht, weil es die Grenzen fehlen (ich würde sagen 0 und r) und mit dem Flächenelement stimmt etwas nicht.



Bezug
                        
Bezug
Schwerpunkt eines 4-tel Kreise: Flächenenlement umwandeln
Status: (Antwort) fertig Status 
Datum: 09:35 Do 01.04.2010
Autor: chrisno

Hallo,

der übliche "Trick" besteht darin, das Flächenelement so hinzuschreiben, das dann daraus ein dx oder dy entsteht.
"Zur praktischen Bestimmung der x-Koordinate des Schwerpunktes im 2-dimensionalen Fall substituiert man dA mit ydx, was einem infinitesimalen Flächenstreifen entspricht. Ferner entspricht hierbei y der die Fläche begrenzenden Funktion y(x)." (aus http://de.wikipedia.org/wiki/Schwerpunkt.)

Das ist nun, was Du als nächstes tun solltest: Mal Dir mal so ein Flächenelement dA hin.
An einer Stelle (Zum Beispiel bei x=r/3) der x-Achse richtest Du ein schmales Rechteck auf, das gegen den Kreisbogen stößt. Die Flähe dieses Rechtecks ist dA. Die eine Seite hat die Länge dx. Die andere Seite hat die Länge die dem Funktionswert an der Stelle x entspricht, nämlich .....

Integrieren heißt Aufsammeln dieser Flächenelemente. Dabei wird jedes noch mit einem zusätzlichen Faktor x versehen. Um alle der Flächenenlemente einzusammeln, musst Du natürlich bei x=0 beginnen und bei x=r aufhören.

Damit kannst Du nun ein wenig ausfüllen: [mm] $x_s [/mm] = [mm] \bruch{1}{A} \int_0^r [/mm] x [mm] \ldots [/mm] dx$

Bezug
                                
Bezug
Schwerpunkt eines 4-tel Kreise: dA = ydx
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 01.04.2010
Autor: Intelinside

Also muss ich eine Funktion finden die die Läge des Kreisbogens beschreibt in Abhänigkeit von x.

Also y(dx) aufstellen und dann alles in
[mm] \bruch{1}{A}\integral_{}^{}{y(dx) dx} [/mm] einsetzten.

Ich habe mir gedacht ich nehme die Formel zur Berechnung der Segmenthöhe :
[mm] h=r-\wurzel{r^{2}-({\bruch{s}{2}})^{2}} [/mm]
stimmt das soweit?


[Dateianhang nicht öffentlich]




und ich setzte das so ein:



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Schwerpunkt eines 4-tel Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Fr 02.04.2010
Autor: chrisno

Dein dA ist falsch eingezeichnet. Es mus ein längliches Rechteck sein, das bis auf die x-Achse untergeht. Dann verstehe ich Dein $f(x)$ nicht. Du hast doch den Zusammenhang [mm] $x^2 [/mm] + [mm] f^2(x) [/mm] = [mm] r^2$ [/mm] Daraus ergibt sich $f(x)$.
Dieses $f(x)$ gibt Dir die Höhe des Rechtecks an. Die Breite ist dx.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de