www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Schwerpunkt vom Halbkreis
Schwerpunkt vom Halbkreis < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt vom Halbkreis: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 00:51 Do 07.06.2012
Autor: Highchiller

Aufgabe
Es sei $K [mm] \subset \IR^n$ [/mm] eine kompakte Menge mit positivem Volumen V. Man nennt den Punkt $s = [mm] (s_1,...,s_n)$ [/mm] mit
[mm] $s_k [/mm] = [mm] \frac{1}{V} \int_{K} x_k [/mm] d [mm] \mathfrak{v}_2(x,y), [/mm] k = 1, ..., n$
den Schwerpunkt von K.

Berechnen Sie den Schwerpunkt des Halbkreises
$H = [mm] \left \{ (x,y) \in \IR^2; x^2+y^2 \le 1, y \ge 0 \right \}$. [/mm]

An sich sehr easy. Mich irritiert nur Wikipedia :D
http://de.wikipedia.org/wiki/Geometrischer_Schwerpunkt

Dort steht [mm] $y_s [/mm] = r [mm] \frac{l}{b}$ [/mm] (unter 1.1.2)
Für unser Beispiel wäre r = 1, l = 2 und b = [mm] $\pi$ [/mm]
Dann würde da rauskommen der Punkt $( 0, [mm] \frac{2}{\pi} [/mm] )$.
Das doch aber quatsch. Rein logisch schon...

Also mal "streng" Mathematisch:
V vom Einheitshalbkreis = [mm] $\frac{\pi}{2}$ [/mm]

[mm] $s_1 [/mm] = 0$ ist trivial
[mm] $s_2 [/mm] = [mm] \frac{1}{V} \int_{0}^{1} \int_{- \sqrt{1-y^2} }^{ \sqrt{1-y^2} } [/mm] y d [mm] \mathfreak{v}_2(x,y) [/mm] = [mm] \frac{2}{\pi} \int_{0}^{1} [/mm] 2y [mm] \sqrt{1-y^2} [/mm] dy = [mm] \frac{4}{\pi 3}$ [/mm]

Ähhh ja. Wikipedia-Fail?
Die Zahl würde vom Gefühl her auch viel ordentlicher ausschauen. Was meint ihr? Deute ich in Wiki einfach was falsch?

Liebe Grüße,
Highchiller

        
Bezug
Schwerpunkt vom Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Do 07.06.2012
Autor: algieba

Hi Highchiller

Nein das ist schon überall richtig. Du hast in Wikipedia die Formel für den Kreisbogen und nicht für den Kreisausschnitt genommen. Die Formel für den Kreisauschnitt findest du unter 1.2.4., und mit dieser Formel kommt auch das gleiche Ergebnis wie bei dir raus.

Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de