www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Schwingung
Schwingung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 02.11.2010
Autor: Kuriger

Aufgabe
Eine horizontale Platte führt in vertikaler Richtung harmonische Schwingungen mit einer AMplitude von 5mm aus. Wie gross darf die Schwingungsfrequenz maximal sein, wenn eine Masse, die frei auf der Platte liegt nicht abheben soll?

Hallo

ich beisse mir leider gerade so ziemlich die Zähne aus.

der Ansatz wird wohl sein a [mm] \le [/mm] g

bei der harmonischen Schwingung gilt bekanntlich:
y = A * sin(wt + [mm] \alpha) [/mm]

Nun leite ich dies zweimal ab:
[mm] \ddot{y} [/mm] = a = -A * [mm] w^2 [/mm] * sin(wt + [mm] \alpha) [/mm]

Ich habe gelesen, dass oftmals der Phasenwinkel vernachlässigt werden kann, auch hier?
[mm] \ddot{y} [/mm] = a = -A * [mm] w^2 [/mm] * sin(wt)

Nun üverlege ich mir noch, wann die Beschleunigung maximal wird. Dies ist der Fall wenn sin(wt) = 1 ist, also lässt sich das vereinfachen:
[mm] \ddot{y} [/mm] = a = -A * [mm] w^2 [/mm]

Also setze ich mal die Ungleichung
(1) -A * [mm] w^2 \le [/mm] g


Ich stelle (1) nach w um.
-A * [mm] w^2 \le [/mm] g
w [mm] \le \wurzel{\bruch{g}{-A}} [/mm]

Das Problem ist wegen dem negativen Vorzeichen??????Setze mal A = 0.005m ein (statt minuts)
w [mm] \le [/mm] 744.29 [mm] \to [/mm] w = 44.29
Bei einer harmonischen Schwingung gilt
v = [mm] \bruch{w}{2\pi} [/mm] = 7.05 Hz

Also das Musterresultat sagt auch das, aber glaube eher das das ein zufall ist

Danke, Gruss Kuriger







        
Bezug
Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 02.11.2010
Autor: chrisno

Es gitb einen Ort, an dem sin=1 und einen anderen an dem sin=-1. Wo ist die Gefahr des Abhebens, im oberen oder im unteren Umkehrpunkt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de