www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Schwingungen/Trigometrie
Schwingungen/Trigometrie < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingungen/Trigometrie: Wie geht das nur?!
Status: (Frage) beantwortet Status 
Datum: 23:08 Mo 23.10.2006
Autor: Smirgold

Aufgabe
Man wandle x=2,4sin(t)-0,7cos(t) in die Form für die harmonsiche Schwingung y=A/*sin(wt+phi) um.

Auch hierbei weiß ich nicht mehr weiter... Hat jemand ne idee?

Danke nochmals,
Jan


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schwingungen/Trigometrie: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:19 Mo 23.10.2006
Autor: Sein_kleines

Kurze Frage:

in der Definiton zu x: steht da wirklich jeweils nur ein "t" ohne [mm] \omega [/mm] ?!

Bezug
                
Bezug
Schwingungen/Trigometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Di 24.10.2006
Autor: angela.h.b.


> Kurze Frage:
>  
> in der Definiton zu x: steht da wirklich jeweils nur ein
> "t" ohne [mm]\omega[/mm] ?!

Ja.
Im Verlauf der Rechnung sieht man, daß [mm] \omega=1 [/mm] ist.

Gruß v. Angela

Bezug
        
Bezug
Schwingungen/Trigometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 23.10.2006
Autor: Event_Horizon

Wie man das jetzt mathematisch ausrechnet, kann ich dir auch nicht sagen. Eigentlich schaut man dazu in Tabellen mit Additionstheoremen, und holt sich das dort her.

Aber es gibt noch eine andere Möglichkeit:

Mach aus dem cos erstmal einen Sin - du weißt ja, daß die sich nur um 90° unterscheiden.

Dann zeichnest du zwei Vektoren, jeweils mit den Argumenten der sin-Funktion als Winkel z.B. zur x-Achse. Die Länge der Vektoren ist jeweils der Vorfaktor vor dem sin.

Addiere die beiden Vektoren!

Der neue Vektor gibt dir das Ergebnis an, sowohl Winkel als auch Amplitude.



Bezug
                
Bezug
Schwingungen/Trigometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 Di 24.10.2006
Autor: Smirgold

Zur ersten Antwort: in der x-Funktion ist nur t und kein omega vorhanden.

Also ich habe auch als erstes versucht cos in sin umzuwandeln.
Ich bekomme dann ja
[mm] x=2,4sin(t)-0,7sin(t+\bruch{Pi}{2}) [/mm]

Irgendwie muss es auch eine Lösung ohne Zeichnungen geben, aber noch seh ich den Weg dahin überhaupt nicht...

Bezug
        
Bezug
Schwingungen/Trigometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 24.10.2006
Autor: ullim

Hi smirgold,

Man muss [mm] A*sin(\omega*t+\varphi) [/mm] in [mm] A*sin(\omega*t)*cos(\varphi)+A*cos(\omega*t)*sin(\varphi) [/mm] zerlegen. Dann sieht man, das  [mm] \omega=1 [/mm] ist. Durch vergleichen erhält man dann die Gleichungen

[mm] A*cos(\varphi)=2,4 [/mm] und

[mm] A*sin(\varphi)=-0,7 [/mm]

Dividiere beide Gleichungen, dann folgt [mm] tan(\varphi)=-\bruch{0,7}{2,4} [/mm] und daraus kann man [mm] \varphi [/mm] berechnen und anschließend A.

mfg ullim



Bezug
        
Bezug
Schwingungen/Trigometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Di 24.10.2006
Autor: Sein_kleines

Das Ganze kann man auch als Überlagerung behandeln:

wenn

x = 2,4 * sin(t ) - 0,7 * sin(t)

mit
/omega = 1
[mm] x_{1} [/mm] = [mm] A_{1} [/mm] * [mm] sin(\omega [/mm]  t + [mm] \phi [/mm] 1 )
[mm] x_{1} [/mm] = 2,4 * sin(1*t+0)

[mm] x_{2} [/mm] =  [mm] A_{2}* [/mm] sin(1 * t + [mm] \phi [/mm] 2)
[mm] x_{2} [/mm] = - 0,7 * sin(1 * t + [mm] \bruch{\pi}{2}) [/mm]

entsteht eine Überlagerung zweier reiner Sinusschwingungen !

dann ist

y = A * [mm] sin(\omega [/mm] *t + [mm] \phi [/mm] 3 )
= 2,4 * sin(1*t+0) + [  - 0,7 * sin(1 * t + [mm] \bruch{\pi}{2}) [/mm] ]

mit:

A = [mm] \wurzel{ A_{1}^{2} + A_{2}^{2} + 2* A_{1}*A_{2}*cos(\phi 1 - \phi 2)} [/mm]

und

[mm] \phi [/mm] 3 = arctan [mm] \bruch{A_{1}*sin(\phi 1) + A_{2}*sin(\phi 2)}{A_{1}*cos(\phi 1) + A_{2}*cos(\phi 2)} [/mm]

Bezug
                
Bezug
Schwingungen/Trigometrie: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Di 24.10.2006
Autor: Smirgold

Ihr seid wirklich klasse! Hab's jetzt glaub ich ganz gut verstanden...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de