www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Schwingungsformeln herleiten
Schwingungsformeln herleiten < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingungsformeln herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 So 21.09.2008
Autor: Theoretix

Aufgabe
Eine Schwingung lässt sich als Projektion einer gleichförmigen Kriesbewegung mathematisch als Sinusfunktion darstellen.
Wenn gilt:
w(Winkelgeschwindigkeit)= [mm] \bruch{2\pi}{T}; [/mm] T= Periodendauer
lässt sich daraus folgende Formel herleiten:
[mm] s(t)=s0\* sin(w\*t) [/mm]
Begründe!


Hallo zusammen,
wir haben diese Formel im Unterricht "hergeleitet" und es wurde kein wirklicher Zusammenhang erklärt.
Also ganz ehrlich, ich bin eig recht gut in mathe, aber so ein Befehl innerhalb der Sinusfunktion habe ich noch nie gesehen und sonst weiß ich auch nicht, was ich mit dieser Formel genau anfangen soll?!
Könnte mir bitte irgendjemand genau erklären was diese Formel aussagt und wieso sie so zustande kommt wie sie ist?!
Also was genau der Befehl innerhalb der Sinusfunktion bedeutet und, warum genau diese Faktoren enthalten sind.
Wäre wirklich sehr freundlich, wenn es jemand schafft mir diese Formel näher zu bringen als mein Lehrer=)
Danke im Vorraus an alle!
MFG Theoretix

        
Bezug
Schwingungsformeln herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 So 21.09.2008
Autor: leduart

Hallo
Ich hoffe, dir ist Winkel im Bogenmass bekannt.
[mm] \omega [/mm] gibt den zurueckgelegten Winkel pro Zeit an. der Sekundenzeiger auf ner Uhr hat also die Winkelgeschw. [mm] \omega=2\pi/(60s). [/mm]
Ich sehe keinen "befehl" in dem sin, sondern nur das Argument [mm] \omega*t, [/mm] das fuer jedes t einen Winkel angibt. fuer den Zeiger oben etwa fuer t=15s [mm] \omega*t= \pi/2 [/mm] oder [mm] 90^o. [/mm]
wenn du dir in []wiki die Animation in etwa der Mitte der Seite ansiehst, solltest du sehen, dass die jeweilige vertikale Auslenkung der [mm] sin(\omega*t) [/mm] ist, wenn [mm] \omega [/mm] die Winkelgeschw. ist mit der der Zeiger umlaeuft.
Auch mathematiker bezeichnen sin und cos fkt als "projektion der Kreisbewegung.
Natuerlich muss man dazu auch mal gesehen haben, dass etwa ein Federpendel und ein Punkt auf dem Umfang eines sich drehenden Kreises, wenn man den Kreis so ansieht, dass er nur ein Strich ist, genau gleich laufen (vorrausgesetzt die Schwingungsdauer und Umlaufzeit sind gleich.
Da ich deine Frage nach dem "Befehl" nicht wirklich verstanden habe, musst du vielleicht noch mal nachfragen.
Gruss leduart


Bezug
                
Bezug
Schwingungsformeln herleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Do 25.09.2008
Autor: Theoretix

danke für die antwort!
ich meinte auch "argument", habe wohl das falsche wort gewählt=)
das bedeutet also, dass sin(wt) angibt dass eine schwigung sich verhält wie ein sinus und das argument besagt dass man die winkegeschwindigkeit zu einem zeitpunkt angeben kann?
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de