www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Schwingungsüberlagerung
Schwingungsüberlagerung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwingungsüberlagerung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Mo 09.07.2007
Autor: ex.aveal

Aufgabe
Bestimmen Sie A und [mm] \alpha_{0} [/mm] aus

i(t) = A sin (wt + [mm] \alpha_{0}) [/mm] = sin (wt) + 2 cos (wt + [mm] \bruch{\pi}{3}) [/mm] + [mm] \wurzel{2} [/mm] sin (wt - [mm] \bruch{\pi}{4}) [/mm]

Hy.

Wir haben leider keinen blassen Schimmer, wie wir an diese Aufgabe rangehen müssen. Wir müssen diese 3 Schwingungen überlagern. Als erstes haben wir den cos natürlich in sin umgewandelt (+90°).
Das wars dann aber auch.

Superposition haben wir in der Formelsammlung nachgeschlagen, kommen aber auch nicht weiter.
Bitte um Hilfe, danke!

        
Bezug
Schwingungsüberlagerung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mo 09.07.2007
Autor: leduart

Hallo
> Bestimmen Sie A und [mm]\alpha_{0}[/mm] aus
>  
> i(t) = A sin (wt + [mm]\alpha_{0})[/mm] = sin (wt) + 2 cos (wt +
> [mm]\bruch{\pi}{3})[/mm] + [mm]\wurzel{2}[/mm] sin (wt - [mm]\bruch{\pi}{4})[/mm]
>  Hy.
>  
> Wir haben leider keinen blassen Schimmer, wie wir an diese
> Aufgabe rangehen müssen. Wir müssen diese 3 Schwingungen
> überlagern. Als erstes haben wir den cos natürlich in sin
> umgewandelt (+90°).
>  Das wars dann aber auch.

das ist unn;tig, aber egal. die 2 Ausdrücke  :  2 cos (wt +

> [mm]\bruch{\pi}{3})[/mm] und  [mm]\wurzel{2}[/mm] sin (wt - [mm]\bruch{\pi}{4})[/mm]

mit Additionstheorem in sinwt*...  und coswt*... verwandeln.
Dann alles mit sinwt sammeln und mit coswt. dann habt ihr: sinwt*(...)+coswt*(....)=A*sinwt+B*coswt
Wenn ihr ein Zeigerdiagramm kennt zeichnet A*sin als Pfeil und dazu senkrcht B*cos.
die Addition ist ein Pfeil der Länge [mm] \wurzel{A^2+B^2} der [/mm] vor dem sin mit dem Winkel [mm] \alpha [/mm] herläuft, mit [mm] tan\alpha=B/A [/mm]
Wenn ihr mit Pfeiladdition nicht gearbitet habt, muss man Asinwt+Bcoswt auf die Form [mm] C*(sinwtcos\alpa+coswtsin\alpha [/mm] bringen.
dazu [mm] \wurzel{A^2+B^2} [/mm] ausklammern ,
also Asinwt+Bcoswt =  [mm] \wurzel{A^2+B^2}*(A/\wurzel{A^2+B^2}*sinwt [/mm] + B/ [mm] \wurzel{A^2+B^2} [/mm] coswt) was in der Klammer steht kann man jetzt als Additionstheorem sehen , mit B/ [mm] \wurzel{A^2+B^2}=sin\alpha [/mm] und A/ [mm] \wurzel{A^2+B^2}=cos\alpha [/mm]
(Grund, das Quadrat [mm] sin^2\alpha+cos^2\alpha=1; [/mm] drum mussten wir die Wurzel ausklammern!)
so und damit habt ihr [mm] \alpha, [/mm] und dann eben
[mm] Asinwt+Bcoswt= \wurzel{A^2+B^2}*(sinwt+\alpha) [/mm]
fraft nach, wenn noch was unklar is.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de