www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Sechseck-Säule
Sechseck-Säule < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sechseck-Säule: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 04.03.2009
Autor: Delia00

Aufgabe
Gegeben sei eine Sechsecksäule. Berechne die Oberfläche und das Volumen der Säule.

Hallo Zusammen,

ich weiß nicht, welche Formeln ich bei einem unregelmäßiger-Sechseck-Säule benutzen muss, um das Volumen und die Oberfläche zu berechnen.

Die Grundfläche kann ich doch in ein Rechteck und in zwei Dreiecke unterteilen, oder??


Kann mir da bitte jemand weiter helfen.

Als Anhang füge ich einen Querschnitt der Säule bei.

[Dateianhang nicht öffentlich]

Danke im voraus.

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Sechseck-Säule: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 04.03.2009
Autor: mmhkt


> Gegeben sei eine Sechsecksäule. Berechne die Oberfläche und
> das Volumen der Säule.
>  Hallo Zusammen,
>  
> ich weiß nicht, welche Formeln ich bei einem
> unregelmäßiger-Sechseck-Säule benutzen muss, um das Volumen
> und die Oberfläche zu berechnen.
>  
> Die Grundfläche kann ich doch in ein Rechteck und in zwei
> Dreiecke unterteilen, oder??
>  
>
> Kann mir da bitte jemand weiter helfen.
>  
> Als Anhang füge ich einen Querschnitt der Säule bei.
>  
> [Dateianhang nicht öffentlich]
>  
> Danke im voraus.


Guten Abend,
Du liegst richtig mit deiner Annahme.
Das Rechteck hat die Maße [mm] 1m\*1,2m. [/mm]
Die beiden Dreiecke sind jeweils gleichschenklige mit einer Hypotenuse von 1m.
Das linke hat die Kathetenlänge 0,71m, das rechte 0,58m.

Die Fläche dieser Dreiecke kannst Du errechnen, wenn Du das Dreieck halbierst, dann zuerst den Herrn Pythagoras um Rat fragst um die dritte Seite, nämlich die Höhe des gleichschenkligen Dreiecks zu ermitteln.
Danach [mm] \bruch{g\*h}{2}. [/mm] Die Grundseite ist die Breite des Sechsecks: 1m.

Zur Höhe deiner Säule hast Du allerdings keine Angaben gemacht. Aber das Volumen sollte das kleinste Problem sein, wenn Du erstmal die Grundfläche errechnet hast.

Die Oberfläche setzt sich zusammen aus:
2 mal Grundfläche
2 Seiten mit der Breite 1,2m und der entsprechenden Höhe
2 Seiten mit der Breite 0,71m            "
2 Seiten mit der Breite 0,58m            "

Ich hoffe, es ist verständlich geworden.
Ansonsten nochmal nachfragen.

Schönen Abend
mmhkt

Bezug
                
Bezug
Sechseck-Säule: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 04.03.2009
Autor: Delia00

Hallo,

die Höhe der Säule soll 4m betragen.


Wenn ich die Grundfläche berechnet habe, muss ich dann, wenn ich das Volumen berechnen will, die Grundseite mit der Höhe multiplizieren??

Bei einer regelmäßigen Sechseck-Säule kommt doch aber bei der Voluemberechnung auch Wurzel drei vor.

Bezug
                        
Bezug
Sechseck-Säule: regelmäßiges Sechseck
Status: (Antwort) fertig Status 
Datum: 20:39 Mi 04.03.2009
Autor: Loddar

Hallo Delia!


> Wenn ich die Grundfläche berechnet habe, muss ich dann,
> wenn ich das Volumen berechnen will, die Grundseite mit der
> Höhe multiplizieren??

[ok] Ja!

  

> Bei einer regelmäßigen Sechseck-Säule kommt doch aber bei
> der Voluemberechnung auch Wurzel drei vor.

Ja, aber da kommt das aus der Grundfläche mit dem Sechseck, welches man auch in 6 gleichseitige Dreiecke zerlegen kann.


Gruß
Loddar



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de