www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Sehnenviereck Beweis
Sehnenviereck Beweis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sehnenviereck Beweis: Idee gesucht
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 08.11.2010
Autor: michael_vd_recke

Aufgabe
Der Punkt P liegt im Inneren des Dreiecks ABC. Die Geraden AP, BP und CP
schneiden die Strecken BC, CA bzw. AB in den Punkten D, E bzw. F. Beweisen Sie, dass das Viereck CEPD ein Sehnenviereck ist, wenn die Vierecke AFPE und BDPF Sehnenvierecke sind.

Hi Leute,

also ich häng ein wenig bei der Frage.

Kann ich das irgendwie auch mit Paralleleln und dann dem Sehnenvierecksatz rauskriegen? Oder wie mach ich das?

LG Michi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sehnenviereck Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Mo 08.11.2010
Autor: abakus


> Der Punkt P liegt im Inneren des Dreiecks ABC. Die Geraden
> AP, BP und CP
>  schneiden die Strecken BC, CA bzw. AB in den Punkten D, E
> bzw. F. Beweisen Sie, dass das Viereck CEPD ein
> Sehnenviereck ist, wenn die Vierecke AFPE und BDPF
> Sehnenvierecke sind.

Wenn diese beiden Vierecke Sehnenvierecke sind, dann haben ihre Innenwinkel beim Punkt P die Größe [mm] 180°-\alpha [/mm] bzw. [mm] 180°-\beta. [/mm]
Was folgt daraus für den Winkel DPE?
Gruß Abakus

>  Hi Leute,
>  
> also ich häng ein wenig bei der Frage.
>  
> Kann ich das irgendwie auch mit Paralleleln und dann dem
> Sehnenvierecksatz rauskriegen? Oder wie mach ich das?
>  
> LG Michi
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Sehnenviereck Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 11.11.2010
Autor: michael_vd_recke

dann ist der Winkel im Viereck CEPD bei P [mm] 180°-\gamma, [/mm] also ergänzt sich dieser Winkel mit [mm] \gamma [/mm] zu [mm] 180°-\gamma+\gamma [/mm] = 180° daraus folgt, dass CEPD auch ein sehnenviereck ist?

Bezug
                        
Bezug
Sehnenviereck Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Do 11.11.2010
Autor: abakus


> dann ist der Winkel im Viereck CEPD bei P [mm]180°-\gamma,[/mm]
> also ergänzt sich dieser Winkel mit [mm]\gamma[/mm] zu
> [mm]180°-\gamma+\gamma[/mm] = 180° daraus folgt, dass CEPD auch
> ein sehnenviereck ist?

Ersetze das letzte Fragezeichen durch einen Punkt.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de