Selbstadjungierte Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:56 Mo 28.06.2010 | Autor: | Ayame |
Aufgabe | Der lin Abb. [mm] \mu [/mm] : [mm] \IR^{2} [/mm] --> [mm] \IR^{2} [/mm] sei bzgl der kanonischen Basis die Matrix [mm] \pmat{ 1 & 2 \\ 3 & 2 } [/mm] zugeordnet. Ist mu selbstadjungiert bzgl. des durch
[mm] \vektor{x_{1} \\ x_{2}} [/mm] * [mm] \vektor{y_{1} \\ y_{2}} [/mm] = [mm] x_{1}y_{1}+ 3x_{2}y_{2}
[/mm]
definiertes Skalarprodukt ? |
also z.z ist doch dass <f(x),y> = <x,f(y)> gilt.
[mm] (\pmat{ 1 & 2 \\ 3 & 2 }*\vektor{x_{1} \\ x_{2}}) \vektor{y_{1} \\ y_{2}} [/mm] = [mm] \vektor{x_{1} \\ x_{2}} [/mm] ( [mm] \pmat{ 1 & 2 \\ 3 & 2 }*\vektor{y_{1} \\ y_{2}})
[/mm]
[mm] \pmat{ x_{1}+2x_{2} \\ 3x_{1} + 2x_{2}} \vektor{y_{1} \\ y_{2}} [/mm] = [mm] \vektor{x_{1} \\ x_{2}} \pmat{ y_{1}+2y_{2} \\ 3y_{1} + 2y_{2}}
[/mm]
Hier muss ich das skalarprodukt verwenden.
[mm] (x_{1}+2x_{2})y_{1} [/mm] + [mm] 3(3x_{1}+2x_{2})y_{2} [/mm] = [mm] (y_{1}+2y_{2})x_{1}+3(3y_{1}+2y_{2})x_{2}
[/mm]
das wäre doch dal geiche solange [mm] x_{1}y_{2}=y_{2}x_{1} [/mm] gegeben ist, also dass die kommutativität gegeben ist.
Kann mir vllt jemand helfen ?
|
|
|
|
Hallo,
> Der lin Abb. [mm]\mu[/mm] : [mm]\IR^{2}[/mm] --> [mm]\IR^{2}[/mm] sei bzgl der
> kanonischen Basis die Matrix [mm]\pmat{ 1 & 2 \\ 3 & 2 }[/mm]
> zugeordnet. Ist mu selbstadjungiert bzgl. des durch
> [mm]\vektor{x_{1} \\ x_{2}}[/mm] * [mm]\vektor{y_{1} \\ y_{2}}[/mm] =
> [mm]x_{1}y_{1}+ 3x_{2}y_{2}[/mm]
> definiertes Skalarprodukt ?
> also z.z ist doch dass <f(x),y> = <x,f(y)> gilt.
>
> [mm](\pmat{ 1 & 2 \\ 3 & 2 }*\vektor{x_{1} \\ x_{2}}) \vektor{y_{1} \\ y_{2}}[/mm]
> = [mm]\vektor{x_{1} \\ x_{2}}[/mm] ( [mm]\pmat{ 1 & 2 \\ 3 & 2 }*\vektor{y_{1} \\ y_{2}})[/mm]
>
> [mm]\pmat{ x_{1}+2x_{2} \\ 3x_{1} + 2x_{2}} \vektor{y_{1} \\ y_{2}}[/mm]
> = [mm]\vektor{x_{1} \\ x_{2}} \pmat{ y_{1}+2y_{2} \\ 3y_{1} + 2y_{2}}[/mm]
>
> Hier muss ich das skalarprodukt verwenden.
>
> [mm](x_{1}+2x_{2})y_{1}[/mm] + [mm]3(3x_{1}+2x_{2})y_{2}[/mm] = [mm](y_{1}+2y_{2})x_{1}+3(3y_{1}+2y_{2})x_{2}[/mm]
Nach Def. eigentlich rechterhand:
[mm] $x_1(y_{1}+2y_{2})+3x_2(3y_{1}+2y_{2})$ [/mm] (aber in [mm] $\IR$ [/mm] ist ja die Multiplikation schön nett kommutativ)
>
> das wäre doch dal geiche solange [mm]x_{1}y_{2}=y_{2}x_{1}[/mm]
> gegeben ist, also dass die kommutativität gegeben ist.
Hmm, wenn du das Gezuppel oben ausmultipliziertst (Kommutativität gilt sowieso, da du reelle Werte miteinander verarztest), so komme ich darauf, dass Gleichheit nur dann gilt, wenn
1) [mm] $2x_2y_1=2x_1y_2$ [/mm] ist und
2) [mm] $9x_1y_2=9x_22y_1$
[/mm]
Und das gilt offensichtlich nicht generell ...
Gib also ein Gegenbsp. mit geeigneten [mm] $x=\vektor{x_1\\x_2}, y=\vektor{y_1\\y_2}$ [/mm] an.
>
> Kann mir vllt jemand helfen ?
Gruß
schachuzipus
|
|
|
|