Semantische Äquivalenz < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Mi 03.10.2007 | Autor: | Zesa |
Aufgabe | Zeigen Sie, dass (p -> q) -> r und p -> (q -> r) nicht äquivalent sind. |
Hallo Matheraum Team,
ich bin neu seit zwei Tagen am Studieren, bzw nun erstmal in den Brückenkursen.
Anscheind war über ein Jahr pause nachdem Abitur nicht gut.
Aber nun zum wesentlichen:
Die Aufgabe bereitet mir Probleme.
Zwar kenne ich die Regeln nun auswendig, die ich benutzen muss, habe auch mal für p=1, q=0 und r=1 gesetzt, doch dann ist es ja äquivalent.
Anscheind mache ich hier irgendein Fehler.
Wäre Super, wenn mir jemand weiterhelfen würde.
Danke...Gruß Zesa
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hallo Zesa.
leider postest du keine einzige Rechnung von dir mit ...
Da ist es schwer zu entscheiden, ob und wenn ja, wo du einen Fehler gemacht hast
Erstelle doch am Einfachsten eine Wahrheitswertetabelle, das ist schnell gemacht und man kann ablesen, dass die Aussagen [mm] $(p\rightarrow q)\rightarrow [/mm] r$ und [mm] $p\rightarrow (q\rightarrow [/mm] r)$ nicht gleichwertig sind
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:08 Mi 03.10.2007 | Autor: | Zesa |
(p -> q) -> r und p -> (q -> r) p=1, q=0 und r=1
beispiel:
1.klammer: wenn 1 dann 0 = 0
wenn 0 dann 1 = 1
LINKS 1
2.klammer: wenn 0 dann 1 = 1
wenn 1 dann 1 = 1
1 äquivalenz zu 1 ??? aber soll ja nicht...
das verwirrt!
|
|
|
|
|
Hallo Zesa,
die beiden Aussagen sind doch nur dann gleichwertig, wenn sie für JEDE
Kombination der Wahrhheitswerte von $p,q,r$ wieder denselben
Wahrheitswert "ausspucken"
Für den Fall p=1,q=0,r=1 tun sie das auch und noch für die meisten anderen Kombinationen.
Eigentlich unterscheiden sich die Aussagen nur für 2 Kombinationen der Wahrheitswerte von $p,q,r$, nämlich für
(1) p=0,q=1,r=0 und (2) p,q,r=0
Wie gesagt, mal die ne komplette Wahrheitswertetabelle auf...
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:41 Mi 03.10.2007 | Autor: | Zesa |
hi danke nochmal...
willst du damit sagen? ich soll alles möglichkeiten der wertigkeit ausprobieren???
ich dachte zumindest es gibt nur EINE lösung?
weil die aufgabe heißt ja, dass ich zeigen soll, dass es nicht äquivalent ist...
mal ist das der fall, mal nicht, also muss ich dem prof sagen, dass es
zb bei p,q,r = 0 nicht der fall ist?
oder habe ich das falsch verstanden?
|
|
|
|
|
Hi nochmal,
> hi danke nochmal...
>
> willst du damit sagen? ich soll alles möglichkeiten der
> wertigkeit ausprobieren???
na du hast doch für ne komplette Wahrheitswertetabelle nur 8 mögliche Verteilungen für die Wahrheitswerte von p,q,r, das ist5 nicht sooo viel Arbeit
> ich dachte zumindest es gibt nur EINE lösung?
verstehe ich nicht, was meinst du damit genau?
> weil die aufgabe heißt ja, dass ich zeigen soll, dass es
> nicht äquivalent ist...
> mal ist das der fall, mal nicht, also muss ich dem prof
> sagen, dass es
> zb bei p,q,r = 0 nicht der fall ist?
Du sollst ja zeigen, dass die beiden Aussagen in der Aufgabenstellung nicht äquivalent sind, da reicht dann natürlich die Angabe [mm] \textrm{\underline{einer}} [/mm] Wahrheitswerteverteilung von p,q,r, die bei [mm] $(p\rightarrow q)\rightarrow [/mm] r$ und [mm] $p\rightarrow (q\rightarrow [/mm] r)$ unterschiedliche Wahrheitswerte liefert
Und die kannst du aus besagter WWT ablesen...
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:39 Mi 03.10.2007 | Autor: | Zesa |
also: W=Wahr ; F=Falsch
p(W),q(W),r(W) => W äqu. W
p(W),q(W),r(F) => F äqu. F
p(W),q(F),r(W) => W äqu. W
p(W),q(F),r(F) => W äqu. W
p(F),q(F),r(F) => F äqu. W
p(F),q(F),r(W) => W äqu. W
p(F),q(W),r(W) => W äqu. W
p(F),q(W),r(F) => F äqu. W
so sieht meine "wertetabelle" aus...
wie bist du denn so schnell auf p(0), q(1), r(0)
und auf p(0),q(0),r(0)???
aber ist das richtig, wie du meintest?
gruß zesa
|
|
|
|
|
Hi,
ja sowas in der Art meinte ich,
die 8 Verteilungen für die Wahrheitswerte von p,q,r sind richtig.
Durch die Spalte nach dem [mm] \Rightarrow [/mm] blicke ich nicht durch
Nun musst du bzgl jeder dieser 8 Verteilungen schauen, welchen Wahrheitswert zum einen [mm] $p\rightarrow (q\rightarrow [/mm] r)$ und zum anderen [mm] $(p\rightarrow q)\rightarrow [/mm] r$ liefert.
Füge also noch 2 Spalten ein, eine mit den entsprechenden Wahrheitswerten von [mm] $p\rightarrow (q\rightarrow [/mm] r)$, die andere mit den Wahrheitswerten von [mm] $(p\rightarrow q)\rightarrow [/mm] r$
An der WWT kannst du dann ablesen, dass die beiden Aussagen in allen Verteilungen von p,q,r außer den beiden genannten gleichen
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 03.10.2007 | Autor: | Zesa |
W äqu. W heißt
W äquivalent zu W....
aber wie kamst du denn auf die lösungen?
du kamst ja schneller rauf?
danke...zesa
|
|
|
|
|
Hallo nochmal,
> W äqu. W heißt
> W äquivalent zu W....
Das dachte ich mir zwar schon, aber was willst du damit sagen? [mm] Wahr\gdh [/mm] Wahr ? Das ergibt wenig Sinn...
> aber wie kamst du denn auf die lösungen?
> du kamst ja schneller rauf?
Durch die mittlerweile 1000 mal angsprochene Wahrheitswertetabelle
Ich kann leider mit latex keine Tabelle machen, aber ich hänge mal ne Word-Tabelle an:
Daran habe ich abgelesen, dass es in den 2 erwähnten Fällen unterschiedliche Wahrheitswerte für die beiden Aussagen gibt
Gruß
schachuzipus
Dateianhänge: Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:35 Mi 03.10.2007 | Autor: | Zesa |
danke für den anhang...bei der einen zeile hast du statt nen w ein f gemacht:)
dachte vllt hast du das anders hingekriegt, aber anscheind gehts nur so wie du es geschrieben hast:)
egal ich weiß was du meinst, meine sieht ja so ähnlich aus...
ich weiß es macht wenig sinn, sollte auch nur zur veranschaulichung dienen.
bedanke mich und wünsche einen schönen abend...
danke
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:37 Mi 03.10.2007 | Autor: | Zesa |
moment hast bei einigen zeilen es doppelt gemacht, war bestimmt ausversehen...byee
|
|
|
|
|
Hi,
ja stimmt natürlich, in der Spalte q muss [mm] \vmat{ w\\w\\f\\f\\w\\w\\f\\f } [/mm] stehen. Habs in der Eile falsch abgetippelt von meinem Schmierblatt
LG
schachuzipus
|
|
|
|