www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - (Semi-)Elastizität in Regr.
(Semi-)Elastizität in Regr. < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Semi-)Elastizität in Regr.: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:12 So 06.12.2015
Autor: xilef

Aufgabe 1
Zeigen Sie, dass in dem Regressionsmodell

[mm] y_i [/mm] = [mm] \produkt_{j=1}^{k} x_{ij}^{\beta_j}\epsilon_{i} [/mm] mit [mm] x_{ij} [/mm] > 0 und [mm] E(\epsilon_{i}|x_{i}) [/mm] = 1 (i = 1, ..., n)

der Parameter [mm] \beta_{j} [/mm] ist exakt die Elastizität von [mm] E(y|x_{i}) [/mm] hinsichtlich [mm] x_{ij} [/mm]


Aufgabe 2
Bestätigen sie, dass der Parameter [mm] \beta_{j} [/mm] in dem Modell [mm] y_{i} [/mm] = [mm] E(x^{'}\beta)\epsilon_{i} [/mm] mit [mm] E(\epsilon_{i}|x_{i}) [/mm] = 1 ist exakt die Semi-Elastizität von [mm] E(y|x_{i}) [/mm] hinsichtlich [mm] x_{ij}. [/mm]


Hallo,

ich habe auch Schwierigkeit mit einer anderen Aufgabe:

Erstmal zu dem was ich verstehe: Die Elastizität des Parameters [mm] \beta_{j} [/mm] berechne ich durch die partielle Ableitung der jeweiligen Gleichung nach [mm] y_{i}. [/mm] Semi-Elastizität ist gegeben (hier in Aufgabe 2), wenn eine Seite der Gleichung logarithmiert ist.

Bei Aufgabe 1 weiß ich nicht, wie mit dem Produktsymbol richtig umgehe. Angenommen wir haben die Gleichung [mm] y_1 [/mm] = [mm] \produkt_{j=1}^{k} x_{1j}^{\beta_j}\epsilon_{1} [/mm] dann könnte ich die Gleichung umformen zu [mm] y_1 [/mm] = [mm] x_{11}^{\beta_1} [/mm] * [mm] x_{12}^{\beta_2}, [/mm] ... [mm] x_{ij}^{\beta_j}. [/mm] Den Term könnte ich auch logarithimieren und dann ableiten. Aber darf ich das?

Aufgabe 2: Hier würde ich auf jeden fall zu erst logarithimieren, Der Erwartungwert für [mm] E(\epsilon_{i}|x_{i}) [/mm] würde die Gleichung vereinfachen zu. Kann ich danach dann einfach ableiten oder gibt's noch was zu beachten?

Ich habe das Gefühl etwas Grundlegendes zu übersehen oder einen großen Fehler zu machen.

Vielen Dank und allen einen schönen 2. Advent!

Felix

        
Bezug
(Semi-)Elastizität in Regr.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 06.12.2015
Autor: luis52


> Zeigen Sie, dass in dem Regressionsmodell
>  
> [mm]y_i[/mm] = [mm]\produkt_{j=1}^{k} x_{ij}^{\beta_j}\epsilon_{i}[/mm] mit
> [mm]x_{ij}[/mm] > 0 und [mm]E(\epsilon_{i}|x_{i})[/mm] = 1 (i = 1, ..., n)
>  
> der Parameter [mm]\beta_{j}[/mm] ist exakt die Elastizität von
> [mm]E(y|x_{i})[/mm] hinsichtlich [mm]x_{ij}[/mm]
>
>  
> Erstmal zu dem was ich verstehe: Die Elastizität des
> Parameters [mm]\beta_{j}[/mm] berechne ich durch die partielle
> Ableitung der jeweiligen Gleichung nach [mm][mm] y_{i}. [/mm]

Das stimmt nur semi. ;-)

> Bei Aufgabe 1 weiß ich nicht, wie mit dem Produktsymbol
> richtig umgehe.

Machen wir uns die Chose mal einfacher, indem wir auf $i$ verzichten und mit $k=2$ argumentieren. Betrachte also [mm] $y=x^{\beta_1}z^{\beta_2}\varepsilon$. [/mm] Dann ist [mm] $\operatorname{E}[y\mid x,z]=x^{\beta_1}z^{\beta_2}=g(y)$. [/mm] Die  Elastizität von $ [mm] E(y|x_{i}) [/mm] $ hinsichtlich $x$ ist definiert durch [mm] $\frac{\partial g(y)/\partial x}{g(y)/x}$ [/mm] ...

Dir auch noch einen schoenen 2. Advent, Felix. (Trotz allem ...)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de