www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Semimartigale
Semimartigale < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semimartigale: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:56 Sa 09.07.2011
Autor: kuemmelsche

Hallo zusammen,

ich habe eine grundsätzliche Frage zu Semimartigalen:

Oft findet man ja in Büchern ein Semimartigal definiert als einen adaptierten càdlàg Prozess, der in ein lokales Martingal und einen Prozess von lokal endlicher Variation zerlegbar ist.

Die Definition die mir sehr viel besser gefällt (und z.B. im Protter genommen wird), ist die über Stetigkeit eines "Integraloperators". Im wesentlichen heißt das: Man sagt in adaptierter càdlàg Prozess heißt Semimartingal, wenn er bezüglich der Konvergenz in ucp für bestimmten Operator von S in D (also von einfachen Funktionen in càdlàg Funktionen) die Stetigkeit erhält.

Dann sieht man relativ leicht, dass aus der ersten die zweite folgt. Ich würde gerne wissen wie man die Rückrichtung zeigt. Ich nehme mir ein Semimartingal im zweiten Sinne und möchte zeigen dass es zerlegbar ist in ein lokales Martingal und einen Prozess von lokal endlicher Variation. Ich hab versucht per Widerspruch zu zeigen was ich möchte, aber iwie hängt es da.

Ich hoffe jemand kann mir helfen.

Danke schonmal!

lg Kai


        
Bezug
Semimartigale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 11.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Semimartigale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Di 12.07.2011
Autor: ucantseeme

Lieber Kai,

die Rückrichtung ist in der Tat etwas komplizierter. Du kannst sie aber auch im Protter nachlesen (Bichteler-Dellacherie Theorem).
Der Gedanke Semimartingale im obigen Sinne zu definieren, hängt damit zusammen, dass man sogenannte "gute Integratoren" haben möchte. Diese gute Integratoren sind grade die Semimartingale. Diese haben immer die von dir angegebene Zerlegung.

Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de