www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Senkrechte Einheitsvektoren
Senkrechte Einheitsvektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Senkrechte Einheitsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mo 10.11.2008
Autor: Sierra

Aufgabe
Berechen Sie
1. alle auf [mm] \vec{a} [/mm] senkrechten Einheitsvektoren
2. den auf [mm] \vec{a} [/mm] und [mm] \vec{e_{x}} [/mm] senkrecht stehenden Einheitsvektor

[mm] \vec{a} [/mm] = [mm] \vektor{2 \\ -5 \\ 0} [/mm]

Hallo zusammen!

also zu 1.):
mein Problem ist hier, dass es theoretisch doch unendlich viele senkrechte Einheitsvektoren geben müsste... ? demnach müsste ich mir ja eine beschränkte Ebene bauen, die um [mm] \vec{a} [/mm] rotiert.
Wenn es denn so wäre, fehlt mir jedoch jeglicher Ansatz...

zu 2.):
hier muss ich lediglich das Kreuzprodukt von [mm] \vec{a} [/mm] und [mm] \vec{e_{x}} [/mm] berechnen, richtig ?

Gruß Sierra

        
Bezug
Senkrechte Einheitsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 10.11.2008
Autor: angela.h.b.


> Berechen Sie
>  1. alle auf [mm]\vec{a}[/mm] senkrechten Einheitsvektoren
>  2. den auf [mm]\vec{a}[/mm] und [mm]\vec{e_{x}}[/mm] senkrecht stehenden
> Einheitsvektor
>  
> [mm]\vec{a}[/mm] = [mm]\vektor{2 \\ -5 \\ 0}[/mm]
>  Hallo zusammen!
>  
> also zu 1.):
>  mein Problem ist hier, dass es theoretisch doch unendlich
> viele senkrechte Einheitsvektoren geben müsste... ? demnach
> müsste ich mir ja eine beschränkte Ebene bauen, die um
> [mm]\vec{a}[/mm] rotiert.
>  Wenn es denn so wäre, fehlt mir jedoch jeglicher
> Ansatz...

Hallo,

anschaulich jedenfalls scheint Dir die Sache klar zu sein.

Bei 1) kannst Du mit dem Skalarprodukt arbeiten. Wenn [mm] \vektor{x\\y\\z} [/mm] ein Einheitsvektor ist, der senkrecht auf [mm] \vec{a} [/mm] steht, ist ja [mm] \vec{a}*\vektor{x\\y\\z}=0 [/mm]

Nun kannst Du ja mal schauen, für welche das der Fall ist. dann noch normieren, denn es sind Einheitsvektoren gesucht.

> zu 2.):
>  hier muss ich lediglich das Kreuzprodukt von [mm]\vec{a}[/mm] und
> [mm]\vec{e_{x}}[/mm] berechnen, richtig ?

Jein. Anschließend ans Kreuzprodukt mußt Du natürlich noch normieren, und Du solltest unbedingt noch kurz darüber nachdenken, ob es wirklich nur diesen einen Vektor gibt.

Gruß v. Angela



Bezug
                
Bezug
Senkrechte Einheitsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 10.11.2008
Autor: Sierra

Hallo Angela, vielen Dank für deine Hilfe!
1) ist mir super klar geworden...
bei 2) hoffe ich gerade, dass du damit meinst, dass das Kreuzprodukt nicht kommutativ ist, ich demnach auch noch [mm] \vec{e_{x}} \times \vec{a} [/mm] rechnen muss.. (und normieren natürlich :-))

Gruß Sierra

Bezug
                        
Bezug
Senkrechte Einheitsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mo 10.11.2008
Autor: angela.h.b.


> Hallo Angela, vielen Dank für deine Hilfe!
>  1) ist mir super klar geworden...
>  bei 2) hoffe ich gerade, dass du damit meinst, dass das
> Kreuzprodukt nicht kommutativ ist, ich demnach auch noch
> [mm]\vec{e_{x}} \times \vec{a}[/mm] rechnen muss..

Hallo,

ja, so hatte ich mir das gedacht.

Gruß v. Angela

Bezug
                                
Bezug
Senkrechte Einheitsvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Mo 10.11.2008
Autor: Sierra

Nochmals vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de